Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 777-798    https://doi.org/10.1007/s11705-022-2148-0
REVIEW ARTICLE
Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review
Siliu Lyu1, Muhammad Adnan Younis1, Zhibin Liu2(), Libin Zeng2, Xianyun Peng2, Bin Yang1, Zhongjian Li1, Lecheng Lei1,2, Yang Hou1,2()
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2. Institute of Zhejiang University-Quzhou, Quzhou 324000, China
 Download: PDF(6778 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As an eco-friendly, efficient, and low-cost technique, photoelectrochemical water splitting has attracted growing interest in the production of clean and sustainable hydrogen by the conversion of abundant solar energy. In the photoelectrochemical system, the photoelectrode plays a vital role in absorbing the energy of sunlight to trigger the water splitting process and the overall efficiency depends largely on the integration and design of photoelectrochemical devices. In recent years, the optimization of photoelectrodes and photoelectrochemical devices to achieve highly efficient hydrogen production has been extensively investigated. In this paper, a concise review of recent advances in the modification of nanostructured photoelectrodes and the design of photoelectrochemical devices is presented. Meanwhile, the general principles of structural and morphological factors in altering the photoelectrochemical performance of photoelectrodes are discussed. Furthermore, the performance indicators and first principles to describe the behaviors of charge carriers are analyzed, which will be of profound guiding significance to increasing the overall efficiency of the photoelectrochemical water splitting system. Finally, current challenges and prospects for an in-depth understanding of reaction mechanisms using advanced characterization technologies and potential strategies for developing novel photoelectrodes and advanced photoelectrochemical water splitting devices are demonstrated.

Keywords photoelectrochemical water splitting      photoelectrodes      hydrogen production      charge separation      catalytic mechanism     
Corresponding Author(s): Zhibin Liu,Yang Hou   
Online First Date: 29 April 2022    Issue Date: 28 June 2022
 Cite this article:   
Siliu Lyu,Muhammad Adnan Younis,Zhibin Liu, et al. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review[J]. Front. Chem. Sci. Eng., 2022, 16(6): 777-798.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2148-0
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/777
Fig.1  Schematic of PEC water splitting by using a semiconductor material.
Fig.2  The positions of VB and CB for several binary and ternary oxide semiconductors on the vacuum scale at pH = 7. The upper and lower dotted lines describe the energies of the reversible hydrogen and oxygen electrodes at pH = 7, respectively. Reprinted with permission from ref. [58], copyright 2014, Wiley-VCH.
Fig.3  Schematic processes of charge generation, transportation, as well as surface redox reactions on a photocatalyst.
Fig.4  The characterizations of structure and morphology for Ta/Ta3N5: (a) X-ray diffraction patterns and (b–e) scanning electron microscopy images of the top and cross-sectional areas of (b, c) the optimized and (d, e) non-optimized Ta/Ta3N5 nanorods. Reprinted with permission from Ref. [90], copyright 2020 Royal Society of Chemistry. (f) The synthetic routes for vertical SrNbO2N nanorod arrays. Reprinted with permission from Ref. [91], copyright 2021, Wiley-VCH.
Fig.5  (a) The suggested mechanism of photocatalytic process over Pt/TiO2/CdS-ZCGSe/Au/BiVO4:Mo. Reproduced with permission from Ref. [157], copyright 2021, American Chemical Society. (b) The mechanism for charge transportation in a Z-scheme system of d-ZCS-P/N-CNTs/Bi4NbO8Cl and (c) calculated band diagram. Reproduced with permission from Ref. [158], copyright 2021, Elsevier.
Fig.6  Schematic diagrams of (a) synthesis method of H:Ti3C2Tx/Cu2O photocathode, (b) a tandem solar-driven water splitting device, and (c) STH efficiencies under irradiation of AM 1.5 G simulated sunlight. Reprinted with permission from Ref. [165], copyright 2020, Elsevier. (d) Schematic structure of 2-BVO-FeOOH/NiOOH dual photoanodes coupled with a sealed PSC and (e) stability test of the unassisted water splitting as well as the corresponding STH value. Reprinted with permission from Ref. [169], copyright 2018, Wiley-VCH. (f) Schematic hierarchical structure of BiVO4, (g) the experimental charge separation and transport efficiencies and (h) mitigation for charge recombination of BiVO4 with a SnO2 layer. Reprinted with permission from Ref. [170], copyright 2021, American Chemical Society.
Fig.7  (a) Schematic illustration of the n-type TiO2/p-type Cu–Ti–O nanotube arrays architecture and estimated band diagrams of (b) n-Si/SiOx/WO3/Ti and (c) n-Si/SiOx/TiO2/Ti hetero-junctions. Reprinted with permission from Ref. [175], copyright 2020, Wiley-VCH. (d) The InGaN nanowire arrays on Si substrate after deposition of Al2O3 and Pt, (e) band diagram of the InGaN/Si photocathode and (f) the structure of surface-modified InGaN nanowire. Reprinted with permission from Ref. [176], copyright 2020, American Chemical Society.
1 P Shi, X Cheng, S Lyu. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chinese Chemical Letters, 2021, 32( 3): 1210– 1214
https://doi.org/10.1016/j.cclet.2020.09.030
2 K Wang, X Wang, Z Li, B Yang, M Ling, X Gao, J Lu, Q Shi, L Lei, G Wu, Y Hou. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides. Nano Energy, 2020, 77 : 105162
https://doi.org/10.1016/j.nanoen.2020.105162
3 N Kannan, D Vakeesan. Solar energy for future world: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 1092– 1105
https://doi.org/10.1016/j.rser.2016.05.022
4 C Jiang, S J A Moniz, A Wang, T Zhang, J Tang. Photoelectrochemical devices for solar water splitting—materials and challenges. Chemical Society Reviews, 2017, 46( 15): 4645– 4660
https://doi.org/10.1039/C6CS00306K
5 Y Zhao, C Ding, J Zhu, W Qin, X Tao, F Fan, R Li, C Li. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition, 2020, 59( 24): 9653– 9658
https://doi.org/10.1002/anie.202001438
6 A Kudo, Y Miseki. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38( 1): 253– 278
https://doi.org/10.1039/B800489G
7 X Chang, T Wang, J Gong. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 2016, 9( 7): 2177– 2196
https://doi.org/10.1039/C6EE00383D
8 A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
https://doi.org/10.1021/ja809598r
9 M Grätzel. Photoelectrochemical cells. Nature, 2001, 414( 6861): 338– 344
https://doi.org/10.1038/35104607
10 C Choudhury, S L Andersen, J Rekstad. A solar air heater for low temperature applications. Solar Energy, 1988, 40( 4): 335– 343
https://doi.org/10.1016/0038-092X(88)90006-0
11 F Cheng, L Wang, H Wang, C Lei, B Yang, Z Li, Q Zhang, L Lei, S Wang, Y Hou. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy, 2020, 71 : 104621
https://doi.org/10.1016/j.nanoen.2020.104621
12 C Lei, H Chen, J Cao, J Yang, M Qiu, Y Xia, C Yuan, B Yang, Z Li, X Zhang. et al.. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Advanced Energy Materials, 2018, 8( 26): 1801912
https://doi.org/10.1002/aenm.201801912
13 C Lei, Y Wang, Y Hou, P Liu, J Yang, T Zhang, X Zhuang, M Chen, B Yang, L Lei. et al.. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy & Environmental Science, 2019, 12( 1): 149– 156
https://doi.org/10.1039/C8EE01841C
14 L Wang, Z Li, K Wang, Q Dai, C Lei, B Yang, Q Zhang, L Lei, M K H Leung, Y Hou. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy, 2020, 74 : 104850
https://doi.org/10.1016/j.nanoen.2020.104850
15 Y Hou, M Qiu, M G Kim, P Liu, G Nam, T Zhang, X Zhuang, B Yang, J Cho, M Chen. et al.. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10( 1): 1392
https://doi.org/10.1038/s41467-019-09394-5
16 Y Hou, M Qiu, G Nam, M G Kim, T Zhang, K Liu, X Zhuang, J Cho, C Yuan, X Feng. Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Letters, 2017, 17( 7): 4202– 4209
https://doi.org/10.1021/acs.nanolett.7b01030
17 Y Hou, M Qiu, T Zhang, J Ma, S Liu, X Zhuang, C Yuan, X Feng. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Advanced Materials, 2017, 29( 3): 1604480
https://doi.org/10.1002/adma.201604480
18 J L White, M F Baruch, J E III Pander, Y Hu, I C Fortmeyer, J E Park, T Zhang, K Liao, J Gu, Y Yan. et al.. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews, 2015, 115( 23): 12888– 12935
https://doi.org/10.1021/acs.chemrev.5b00370
19 F Niu, D Wang, F Li, Y Liu, S Shen, T J Meyer. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Advanced Energy Materials, 2019, 10( 11): 1900399
https://doi.org/10.1002/aenm.201900399
20 R Siavash Moakhar, S M Hosseini-Hosseinabad, S Masudy-Panah, A Seza, M Jalali, H Fallah-Arani, F Dabir, S Gholipour, Y Abdi, M Bagheri-Hariri. et al.. Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Advanced Materials, 2021, 33( 33): 2007285
https://doi.org/10.1002/adma.202007285
21 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238( 5358): 37– 38
https://doi.org/10.1038/238037a0
22 A Hellman, B Wang. First-principles view on photoelectrochemistry: water-splitting as case study. Inorganics, 2017, 5( 2): 37
https://doi.org/10.3390/inorganics5020037
23 H Zhang, H Z Wang, J Xuan. Rational design of photoelectrochemical cells towards bias-free water splitting: thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462 : 228113
https://doi.org/10.1016/j.jpowsour.2020.228113
24 X Q Zhang, A Bieberle-Hutter. Modeling and simulations in photoelectrochemical water oxidation: from single level to multiscale modeling. ChemSusChem, 2016, 9( 11): 1223– 1242
https://doi.org/10.1002/cssc.201600214
25 H Boumeriame, E S Da Silva, A S Cherevan, T Chafik, J L Faria, D Eder. Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64 : 406– 431
https://doi.org/10.1016/j.jechem.2021.04.050
26 C V Reddy, I N Reddy, V V N Harish, K R Reddy, N P Shetti, J Shim, T M Aminabhavi. Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere, 2020, 239 : 124766
https://doi.org/10.1016/j.chemosphere.2019.124766
27 K H Ye, H B Li, D Huang, S Xiao, W T Qiu, M Y Li, Y W Hu, W J Mai, H B Ji, S H Yang. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10( 1): 3687
https://doi.org/10.1038/s41467-019-11586-y
28 S Chandrasekaran, L Yao, L B Deng, C Bowen, Y Zhang, S M Chen, Z Q Lin, F Peng, P X Zhang. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48( 15): 4178– 4280
https://doi.org/10.1039/C8CS00664D
29 Y B Chen, W Y Zheng, S Murcia-Lopez, F Lv, J R Morante, L Vayssieres, C Burda. Light management in photoelectrochemical water splitting—from materials to device engineering. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2021, 9( 11): 3726– 3748
https://doi.org/10.1039/D0TC06071B
30 J H Kim, D Hansora, P Sharma, J W Jang, J S Lee. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48( 7): 1908– 1971
https://doi.org/10.1039/C8CS00699G
31 L Z Li, C H Liu, Y Y Qiu, N Mitsuzak, Z D Chen. Convex-nanorods of alpha-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42( 31): 19654– 19663
https://doi.org/10.1016/j.ijhydene.2017.06.078
32 C Z Wang, Z Chen, H B Jin, C B Cao, J B Li, Z T Mi. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. Journal of Materials Chemistry A, 2014, 2( 42): 17820– 17827
https://doi.org/10.1039/C4TA04254A
33 P Varadhan, H C Fu, D Priante, J R D Retamal, C Zhao, M Ebaid, T K Ng, I Ajia, S Mitra, I S Roqan. et al.. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Letters, 2017, 17( 3): 1520– 1528
https://doi.org/10.1021/acs.nanolett.6b04559
34 Q Nie, L Yang, C Cao, Y M Zeng, G Z Wang, C Z Wang, S W Lin. Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 325 : 151– 159
https://doi.org/10.1016/j.cej.2017.05.021
35 T Hisatomi, J Kubota, K Domen. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43( 22): 7520– 7535
https://doi.org/10.1039/C3CS60378D
36 I R Hamdani, A N Bhaskarwar. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable & Sustainable Energy Reviews, 2021, 138 : 110503
https://doi.org/10.1016/j.rser.2020.110503
37 J K Li, K W Cheng. Surface modification of the p-type Cu2ZnSnS4 photocathode with n-type zinc oxide nanorods for photo-driven salt water splitting. International Journal of Hydrogen Energy, 2021, 46( 53): 26961– 26975
https://doi.org/10.1016/j.ijhydene.2021.05.181
38 Z S Li, W J Luo, M L Zhang, J Y Feng, Z G Zou. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science, 2013, 6( 2): 347– 370
https://doi.org/10.1039/C2EE22618A
39 N Q Wu. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale, 2018, 10( 6): 2679– 2696
https://doi.org/10.1039/C7NR08487K
40 J H Kim, J S Lee. Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 2019, 31( 20): 1806938
https://doi.org/10.1002/adma.201806938
41 S K Saraswat, D D Rodene, R B Gupta. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable & Sustainable Energy Reviews, 2018, 89 : 228– 248
https://doi.org/10.1016/j.rser.2018.03.063
42 F Chen, T Y Ma, T R Zhang, Y H Zhang, H W Huang. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Advanced Materials, 2021, 33( 10): 2005256
https://doi.org/10.1002/adma.202005256
43 W Q Qian, S W Xu, X M Zhang, C B Li, W Y Yang, C R Bowen, Y Yang. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Letters, 2021, 13( 1): 156
https://doi.org/10.1007/s40820-021-00681-9
44 S Zhang, H Ye, J Hua, H Tian. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1( 3): 100015
https://doi.org/10.1016/j.enchem.2019.100015
45 J Joy, J Mathew, S C George. Nanomaterials for photoelectrochemical water splitting—review. International Journal of Hydrogen Energy, 2018, 43( 10): 4804– 4817
https://doi.org/10.1016/j.ijhydene.2018.01.099
46 P T Xu, N S McCool, T E Mallouk. Water splitting dye-sensitized solar cells. Nano Today, 2017, 14 : 42– 58
https://doi.org/10.1016/j.nantod.2017.04.009
47 Y T Huang, S R Kavanagh, D O Scanlon, A Walsh, R L Z Hoye. Perovskite-inspired materials for photovoltaics and beyond-from design to devices. Nanotechnology, 2021, 32( 13): 132004
https://doi.org/10.1088/1361-6528/abcf6d
48 Q Wang, K Domen. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120( 2): 919– 985
https://doi.org/10.1021/acs.chemrev.9b00201
49 F A L Laskowski, M R Nellist, J J Qu, S W Boettcher. Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. Journal of the American Chemical Society, 2019, 141( 4): 1394– 1405
https://doi.org/10.1021/jacs.8b09449
50 A Mazzeo, S Santalla, C Gaviglio, F Doctorovich, J Pellegrino. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chimica Acta, 2021, 517 : 119950
https://doi.org/10.1016/j.ica.2020.119950
51 Y Xu, M A A Schoonen. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85( 3-4): 543– 556
https://doi.org/10.2138/am-2000-0416
52 J R Bolton, S J Strickler, J S Connolly. Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985, 316( 6028): 495– 500
https://doi.org/10.1038/316495a0
53 S Swathi, R Yuvakkumar, G Ravi, E S Babu, D Velauthapillai, S A Alharbi. Morphological exploration of chemical vapor-deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting. Ceramics International, 2021, 47( 5): 6521– 6527
https://doi.org/10.1016/j.ceramint.2020.10.237
54 H Eidsvag, S Bentouba, P Vajeeston, S Yohi, D Velauthapillai. TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules (Basel, Switzerland), 2021, 26( 6): 1687
https://doi.org/10.3390/molecules26061687
55 J Brillet, M Cornuz, F L Formal, J H Yum, M Grätzel, K Sivula. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25( 1): 17– 24
https://doi.org/10.1557/JMR.2010.0009
56 Y B Chen, X Y Feng, Y Liu, X J Guan, C Burda, L J Guo. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Letters, 2020, 5( 3): 844– 866
https://doi.org/10.1021/acsenergylett.9b02620
57 R Solarska, B D Alexander, J Augustynski. Electrochromic and structural characteristics of mesoporous WO3 films prepared by a sol-gel method. Journal of Solid State Electrochemistry, 2004, 8( 10): 748– 756
https://doi.org/10.1007/s10008-004-0541-x
58 L M Peter, K G Upul Wijayantha. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem, 2014, 15( 10): 1983– 1995
https://doi.org/10.1002/cphc.201402024
59 H Wu, H L Tan, C Y Toe, J Scott, L Z Wang, R Amal, Y H Ng. Photocatalytic and photoelectrochemical systems: similarities and differences. Advanced Materials, 2020, 32( 18): 1904717
https://doi.org/10.1002/adma.201904717
60 Z X Zheng, I M C Lo. Multifunctional photoelectrochemical systems for coupled water treatment and high-value product generation: current status, mechanisms, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2021, 34 : 100711
https://doi.org/10.1016/j.coche.2021.100711
61 S Q Zhou, K Y Chen, J W Huang, L Wang, M Y Zhang, B Bai, H Liu, Q Z Wang. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B, 2020, 266 : 118513
https://doi.org/10.1016/j.apcatb.2019.118513
62 M Ahmed, I Dincer. A review on photoelectrochemical hydrogen production systems: challenges and future directions. International Journal of Hydrogen Energy, 2019, 44( 5): 2474– 2507
https://doi.org/10.1016/j.ijhydene.2018.12.037
63 T Bak, J Nowotny, M Rekas, C C Sorrell. Photo-electrochemical hydrogen generation from water using solar energy, materials-related aspects. International Journal of Hydrogen Energy, 2002, 27( 10): 991– 1022
https://doi.org/10.1016/S0360-3199(02)00022-8
64 D E P Vanpoucke, P Bultinck, S Cottenier, V Van Speybroeck, I Van Driessche. Aliovalent doping of CeO2: DFT study of oxidation state and vacancy effects. Journal of Materials Chemistry A, 2014, 2( 33): 13723– 13737
https://doi.org/10.1039/C4TA02449D
65 G Liu, Y N Zhao, C H Sun, F Li, G Q Lu, H M Cheng. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angewandte Chemie International Edition, 2008, 47( 24): 4516– 4520
https://doi.org/10.1002/anie.200705633
66 R Long, N J English. First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2. Journal of Physical Chemistry C, 2010, 114( 27): 11984– 11990
https://doi.org/10.1021/jp100802r
67 M Niu, D J Cheng, D P Cao. Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38( 3): 1251– 1257
https://doi.org/10.1016/j.ijhydene.2012.10.109
68 Y F Hu, H T Huang, J Y Feng, W Wang, H M Guan, Z S Li, Z G Zou. Material design and surface/interface engineering of photoelectrodes for solar water splitting. Solar RRL, 2021, 5( 4): 2100100
https://doi.org/10.1002/solr.202100100
69 Y Jiao, A Hellman, Y R Fang, S W Gao, M Kall. Schottky barrier formation and band bending revealed by first-principles calculations. Scientific Reports, 2015, 5( 1): 11374
https://doi.org/10.1038/srep11374
70 S Kwon, S J Lee, S M Kim, Y Lee, H Song, J Y Park. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy. Nanoscale, 2015, 7( 29): 12297– 12301
https://doi.org/10.1039/C5NR02285A
71 R T Tung. The physics and chemistry of the Schottky barrier height. Applied Physics Reviews, 2014, 1( 1): 011304
https://doi.org/10.1063/1.4858400
72 P Zawadzki, A B Laursen, K W Jacobsen, S Dahl, J Rossmeisl. Oxidative trends of TiO2-hole trapping at anatase and rutile surfaces. Energy & Environmental Science, 2012, 5( 12): 9866– 9869
https://doi.org/10.1039/c2ee22721e
73 V Alexandrov, A Neumann, M M Scherer, K M Rosso. Electron exchange and conduction in nontronite from first-principles. Journal of Physical Chemistry C, 2013, 117( 5): 2032– 2040
https://doi.org/10.1021/jp3110776
74 T Jafari, E Moharreri, A S Amin, R Miao, W Song, S L Suib. Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules (Basel, Switzerland), 2016, 21( 7): 900
https://doi.org/10.3390/molecules21070900
75 Z Zou, J Ye, K Sayama, H Arakawa. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414( 6864): 625– 627
https://doi.org/10.1038/414625a
76 A Riss, M J Elser, J Bernardi, O Diwald. Stability and photoelectronic properties of layered titanate nanostructures. Journal of the American Chemical Society, 2009, 131( 17): 6198– 6206
https://doi.org/10.1021/ja810109g
77 B Wickman, A Bastos Fanta, A Burrows, A Hellman, J B Wagner, B Iandolo. Iron oxide films prepared by rapid thermal processing for solar energy conversion. Scientific Reports, 2017, 7( 1): 40500
https://doi.org/10.1038/srep40500
78 Y Xia, P Yang, Y Sun, Y Wu, B Mayers, B Gates, Y Yin, F Kim, H Yan. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15( 5): 353– 389
https://doi.org/10.1002/adma.200390087
79 S Mahalingam, H Abdullah. Electron transport study of indium oxide as photoanode in DSSCs: a review. Renewable & Sustainable Energy Reviews, 2016, 63 : 245– 255
https://doi.org/10.1016/j.rser.2016.05.067
80 J Xu, Z Wang, W Li, X Zhang, D He, X Xiao. Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts. Nanoscale Research Letters, 2017, 12( 1): 54
https://doi.org/10.1186/s11671-017-1834-1
81 K C Bedin, D N F Muche, M A Jr Melo, A L M Freitas, R V Gonçalves, F L Souza. Role of cocatalysts on hematite photoanodes in photoelectrocatalytic water splitting: challenges and future perspectives. ChemCatChem, 2020, 12( 12): 3156– 3169
https://doi.org/10.1002/cctc.202000143
82 S Rajaambal, K Sivaranjani, C S Gopinath. Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015, 127( 1): 33– 47
https://doi.org/10.1007/s12039-014-0747-0
83 Z Zafar S S Yi J P Li C Q Li Y F Zhu A Zada W J Yao Z Y Liu X Z Yue. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Materials, 2021. doi: 10.1002/eem1002.12171
84 P Zhang, X W Lou. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Advanced Materials, 2019, 31( 29): 1900281
https://doi.org/10.1002/adma.201900281
85 S R Chen, C L Li, Z Y Hou. The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays. Journal of Materials Science, 2020, 55( 14): 5969– 5981
https://doi.org/10.1007/s10853-020-04379-y
86 J B Joo, Q Zhang, M Dahl, I Lee, J Goebl, F Zaera, Y D Yin. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5( 4): 6321– 6327
https://doi.org/10.1039/C1EE02533C
87 H L Tan, R Amal, Y H Ng. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 32): 16498– 16521
https://doi.org/10.1039/C7TA04441K
88 Z Y Yan, W X Huang, X R Jiang, J Z Gao, Y W Hu, H Z Zhang, Q W Shi. Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis. Microporous and Mesoporous Materials, 2021, 323 : 111228
https://doi.org/10.1016/j.micromeso.2021.111228
89 W Zhang, Y Tian, H L He, L Xu, W Li, D Y Zhao. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020, 7( 11): 1702– 1725
https://doi.org/10.1093/nsr/nwaa021
90 Y Pihosh, T Minegishi, V Nandal, T Higashi, M Katayama, T Yamada, Y Sasaki, K Seki, Y Suzuki, M Nakabayashi. et al.. Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy & Environmental Science, 2020, 13( 5): 1519– 1530
https://doi.org/10.1039/D0EE00220H
91 M Q Cao, H M Li, K Liu, J H Hu, H Pan, J W Fu, M Liu. Vertical SrNbO2N nanorod arrays for solar-driven photoelectrochemical water splitting. Solar RRL, 2021, 5( 6): 2000448
https://doi.org/10.1002/solr.202000448
92 X B Chen, L Liu, P Y Yu, S S Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331( 6018): 746– 750
https://doi.org/10.1126/science.1200448
93 F Takagi, Y Kageshima, K Teshima, K Domen, H Nishikiori. Enhanced photoelectrochemical performance from particulate ZnSe:Cu(In,Ga)Se-2 photocathodes during solar hydrogen production via particle size control. Sustainable Energy & Fuels, 2021, 5( 2): 412– 423
https://doi.org/10.1039/D0SE00998A
94 A K Mishra, D Pradhan. Morphology controlled solution-based synthesis of Cu2O crystals for the facets-dependent catalytic reduction of highly toxic aqueous Cr(VI). Crystal Growth & Design, 2016, 16( 7): 3688– 3698
https://doi.org/10.1021/acs.cgd.6b00186
95 H L Tan, R Amal, Y H Ng. Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Applied Materials & Interfaces, 2016, 8( 42): 28607– 28614
https://doi.org/10.1021/acsami.6b09076
96 M Xiao, Z L Wang, M Q Lyu, B Luo, S C Wang, G Liu, H M Cheng, L Z Wang. Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31( 38): 1801369
https://doi.org/10.1002/adma.201801369
97 K Kim, J H Moon. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential. ACS Applied Materials & Interfaces, 2018, 10( 40): 34238– 34244
https://doi.org/10.1021/acsami.8b11241
98 F E Osterloh. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews, 2013, 42( 6): 2294– 2320
https://doi.org/10.1039/C2CS35266D
99 N L Reddy, S Emin, M Valant, M V Shankar. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42( 10): 6627– 6636
https://doi.org/10.1016/j.ijhydene.2016.12.154
100 J Yin, G Z Liao, J L Zhou, C M Huang, Y Ling, P Lu, L S Li. High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. Separation and Purification Technology, 2016, 168 : 134– 140
https://doi.org/10.1016/j.seppur.2016.05.049
101 A Eftekhari, V J Babu, S Ramakrishna. Photoelectrode nanomaterials for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2017, 42( 16): 11078– 11109
https://doi.org/10.1016/j.ijhydene.2017.03.029
102 A K Vishwakarma, P Tripathi, A Srivastava, A S K Sinha, O N Srivastava. Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. International Journal of Hydrogen Energy, 2017, 42( 36): 22677– 22686
https://doi.org/10.1016/j.ijhydene.2017.07.153
103 J J Wang, H F Sun, J Huang, Q X Li, J L Yang. Band structure tuning of TiO2 for enhanced photoelectrochemical water splitting. Journal of Physical Chemistry C, 2014, 118( 14): 7451– 7457
https://doi.org/10.1021/jp5004775
104 M M Momeni, M Akbarnia, Y Ghayeb. Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. International Journal of Hydrogen Energy, 2020, 45( 58): 33552– 33562
https://doi.org/10.1016/j.ijhydene.2020.09.112
105 D Ghosh, K Roy, K Sarkar, P Devi, P Kumar. Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2020, 12( 25): 28792– 28800
https://doi.org/10.1021/acsami.0c05591
106 D Kumar, S Sharma, N Khare. Enhanced photoelectrochemical performance of plasmonic Ag nanoparticles grafted ternary Ag/PaNi/NaNbO3 nanocomposite photoanode for photoelectrochemical water splitting. Renewable Energy, 2020, 156 : 173– 182
https://doi.org/10.1016/j.renene.2020.04.075
107 H X Li, X Li, W Dong, J H Xi, G Du, Z G Ji. Cu nanoparticles hybridized with ZnO thin film for enhanced photoelectrochemical oxygen evolution. Journal of Alloys and Compounds, 2018, 768 : 830– 837
https://doi.org/10.1016/j.jallcom.2018.07.297
108 Z Li, L Shi, D Franklin, S Koul, A Kushima, Y Yang. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51 : 400– 407
https://doi.org/10.1016/j.nanoen.2018.06.083
109 Z K Zheng, W Xie, B B Huang, Y Dai. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24( 69): 18322– 18333
https://doi.org/10.1002/chem.201803705
110 S C Warren, E Thimsen. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5( 1): 5133– 5146
https://doi.org/10.1039/C1EE02875H
111 J Lee, S Mubeen, X Ji, G D Stucky, M Moskovits. Plasmonic photoanodes for solar water splitting with visible light. Nano Letters, 2012, 12( 9): 5014– 5019
https://doi.org/10.1021/nl302796f
112 T Onishi, M Teranishi, S Naya, M Fujishima, H Tada. Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrodes for water oxidation. Journal of Physical Chemistry C, 2020, 124( 11): 6103– 6109
https://doi.org/10.1021/acs.jpcc.9b11207
113 B K Patra, S Khilari, D Pradhan, N Pradhan. Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chemistry of Materials, 2016, 28( 12): 4358– 4366
https://doi.org/10.1021/acs.chemmater.6b01357
114 M Licklederer, R Mohammadi, N T Nguyen, H Park, S Hejazi, M Halik, N Vogel, M Altomare, P Schmuki. Dewetted Au nanoparticles on TiO2 surfaces: evidence of a size-independent plasmonic photoelectrochemical response. Journal of Physical Chemistry C, 2019, 123( 27): 16934– 16942
https://doi.org/10.1021/acs.jpcc.9b02769
115 A Dutta, B Pihuleac, Y Chen, C Zong, L Dal Negro, C Yang. Au@SiO2@Au core-shell-shell nanoparticles for enhancing photocatalytic activity of hematite. Materials Today Energy, 2021, 19 : 100576
https://doi.org/10.1016/j.mtener.2020.100576
116 R S Haider, S Wang, Y Gao, A S Malik, N Ta, H Li, B Zeng, M Dupuis, F Fan, C Li. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy, 2021, 87 : 106189
https://doi.org/10.1016/j.nanoen.2021.106189
117 F Haydous, S J Luo, K T Wu, C Lawley, M Dobeli, T Ishihara, T Lippert. Surface analysis of perovskite oxynitride thin films as photoelectrodes for solar water splitting. ACS Applied Materials & Interfaces, 2021, 13( 31): 37785– 37796
https://doi.org/10.1021/acsami.1c06974
118 M Higashi, K Domen, R Abe. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy & Environmental Science, 2011, 4( 10): 4138– 4147
https://doi.org/10.1039/c1ee01878g
119 D Bae, B Seger, P C K Vesborg, O Hansen, I Chorkendorff. Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46( 7): 1933– 1954
https://doi.org/10.1039/C6CS00918B
120 C Ros, N M Carretero, J David, J Arbiol, T Andreu, J R Morante. Insight into the degradation mechanisms of atomic layer deposited TiO2 as photoanode protective layer. ACS Applied Materials & Interfaces, 2019, 11( 33): 29725– 29735
https://doi.org/10.1021/acsami.9b05724
121 R Wang, L Wang, Y Zhou, Z Zou. Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability. Applied Catalysis B, 2019, 255 : 117738
https://doi.org/10.1016/j.apcatb.2019.05.040
122 S Hu, N S Lewis, J W Ager, J Yang, J R McKone, N C Strandwitz. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. Journal of Physical Chemistry C, 2015, 119( 43): 24201– 24228
https://doi.org/10.1021/acs.jpcc.5b05976
123 M J Kenney, M Gong, Y G Li, J Z Wu, J Feng, M Lanza, H J Dai. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science, 2013, 342( 6160): 836– 840
https://doi.org/10.1126/science.1241327
124 C Ros, T Andreu, J David, J Arbiol, J R Morante. Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7( 38): 21892– 21902
https://doi.org/10.1039/C9TA08638B
125 M T McDowell, M F Lichterman, J M Spurgeon, S Hu, I D Sharp, B S Brunschwig, N S Lewis. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. Journal of Physical Chemistry C, 2014, 118( 34): 19618– 19624
https://doi.org/10.1021/jp506133y
126 R L Fan, W Dong, L Fang, F G Zheng, X D Su, S Zou, J Huang, X S Wang, M R Shen. Stable and efficient multi-crystalline n + p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer. Applied Physics Letters, 2015, 106( 1): 013902
https://doi.org/10.1063/1.4905511
127 M Pavlenko, K Siuzdak, E Coy, K Załęski, M Jancelewicz, I Iatsunskyi. Enhanced solar-driven water splitting of 1D core-shell Si/TiO2/ZnO nanopillars. International Journal of Hydrogen Energy, 2020, 45( 50): 26426– 26433
https://doi.org/10.1016/j.ijhydene.2019.11.231
128 P Ashcheulov, A Taylor, V Mortet, A Poruba, Formal F Le, H Krýsová, M Klementová, P Hubík, J Kopeček, J Lorinčík. et al.. Nanocrystalline boron-doped diamond as a corrosion-resistant anode for water oxidation via Si photoelectrodes. ACS Applied Materials & Interfaces, 2018, 10( 35): 29552– 29564
https://doi.org/10.1021/acsami.8b08714
129 E Coy, K Siuzdak, I Grądzka-Kurzaj, S Sayegh, M Weber, M Ziółek, M Bechelany, I Iatsunskyi. Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: enhancing carrier transfer mechanism. Applied Materials Today, 2021, 24 : 101095
https://doi.org/10.1016/j.apmt.2021.101095
130 W Yang, R R Prabhakar, J Tan, S D Tilley, J Moon. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 2019, 48( 19): 4979– 5015
https://doi.org/10.1039/C8CS00997J
131 X Zhao, W J Luo, J Y Feng, M X Li, Z S Li, T Yu, Z G Zou. Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Advanced Energy Materials, 2014, 4( 9): 1301785
https://doi.org/10.1002/aenm.201301785
132 S Safa, M Khajeh, A R Oveisi, R Azimirad, H Salehzadeh. Photocatalytic performance of graphene quantum dot incorporated UiO-66-NH2 composite assembled on plasma-treated membrane. Advanced Powder Technology, 2021, 32( 4): 1081– 1087
https://doi.org/10.1016/j.apt.2021.02.013
133 L X Sang, J Lin, Y B Zhao. Preparation of carbon dots/TiO2 electrodes and their photoelectrochemical activities for water splitting. International Journal of Hydrogen Energy, 2017, 42( 17): 12122– 12132
https://doi.org/10.1016/j.ijhydene.2017.01.228
134 P Wang, X B Zhou, Y Shao, D Z Li, Z F Zuo, X Z Liu. CdS quantum dots-decorated InOOH: facile synthesis and excellent photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2021, 601 : 186– 195
https://doi.org/10.1016/j.jcis.2021.05.132
135 P Wen, H Li, X Ma, R B Lei, X W Wang, S M Geyer, Y J Qiu. A colloidal ZnTe quantum dot-based photocathode with a metal-insulator-semiconductor structure towards solar-driven CO2 reduction to tunable syngas. Journal of Materials Chemistry A, 2021, 9( 6): 3589– 3596
https://doi.org/10.1039/D0TA10394B
136 C Zhu, C G Liu, Y J Zhou, Y J Fu, S J Guo, H Li, S Q Zhao, H Huang, Y Liu, Z H Kang. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B, 2017, 216 : 114– 121
https://doi.org/10.1016/j.apcatb.2017.05.049
137 P R Deshmukh, Y Sohn, W G Shin. Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. Journal of Alloys and Compounds, 2017, 711 : 573– 580
https://doi.org/10.1016/j.jallcom.2017.04.030
138 S Mohajernia, S Hejazi, A Mazare, N T Nguyen, P Schmuki. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23( 50): 12406– 12411
https://doi.org/10.1002/chem.201702245
139 J N Tiwari, A N Singh, S Sultan, K S Kim. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Advanced Energy Materials, 2020, 10( 24): 2000280
https://doi.org/10.1002/aenm.202000280
140 S D Cosham, V Celorrio, A N Kulak, G Hyett. Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton Transactions (Cambridge, England), 2019, 48( 28): 10619– 10627
https://doi.org/10.1039/C8DT04638G
141 A Iborra-Torres, A N Kulak, R G Palgrave, G Hyett. Demonstration of visible light-activated photocatalytic self-cleaning by thin films of perovskite tantalum and niobium oxynitrides. ACS Applied Materials & Interfaces, 2020, 12( 30): 33603– 33612
https://doi.org/10.1021/acsami.0c05008
142 A Mami, I Saafi, T Larbi, K Ben Messaoud, N Yacoubi, M Amlouk. Unraveling the effect of thickness on the structural, morphological, opto-thermal and DFT calculation of hematite Fe2O3 thin films for photo-catalytic application. Journal of Materials Science Materials in Electronics, 2021, 32( 13): 17974– 17989
https://doi.org/10.1007/s10854-021-06336-0
143 Y Hou, F Zuo, A Dagg, P Y Feng. A three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2013, 52( 4): 1248– 1252
https://doi.org/10.1002/anie.201207578
144 Y Hou, F Zuo, A P Dagg, J K Liu, P Y Feng. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26( 29): 5043– 5049
https://doi.org/10.1002/adma.201401032
145 X Zhang, Y Liu, Z H Kang. 3D branched ZnO nanowire arrays decorated with plasmonic Au manoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6( 6): 4480– 4489
https://doi.org/10.1021/am500234v
146 C X Zhang, P Y Zhao, S X Liu, K Yu. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40( 9): 1324– 1338
https://doi.org/10.1016/S1872-2067(19)63341-3
147 I S Cho, Z B Chen, A J Forman, D R Kim, P M Rao, T F Jaramillo, X L Zheng. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Letters, 2011, 11( 11): 4978– 4984
https://doi.org/10.1021/nl2029392
148 S C Warren, K Voitchovsky, H Dotan, C M Leroy, M Cornuz, F Stellacci, C Hebert, A Rothschild, M Gratzel. Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12( 9): 842– 849
https://doi.org/10.1038/nmat3684
149 S Chen, D L Huang, P A Xu, W J Xue, L Lei, M Cheng, R Z Wang, X G Liu, R Deng. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8( 5): 2286– 2322
https://doi.org/10.1039/C9TA12799B
150 A Wolcott, W A Smith, T R Kuykendall, Y P Zhao, J Z Zhang. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5( 1): 104– 111
https://doi.org/10.1002/smll.200800902
151 R Viter, I Iatsunskyi, V Fedorenko, S Tumenas, Z Balevicius, A Ramanavicius, S Balme, M Kempiński, G Nowaczyk, S Jurga. et al.. Enhancement of electronic and optical properties of ZnO/Al2O3 nanolaminate coated electrospun nanofibers. Journal of Physical Chemistry C, 2016, 120( 9): 5124– 5132
https://doi.org/10.1021/acs.jpcc.5b12263
152 I Iatsunskyi, E Coy, R Viter, G Nowaczyk, M Jancelewicz, I Baleviciute, K Zaleski, S Jurga. Study on structural, mechanical, and optical properties of Al2O3-TiO2 nanolaminates prepared by atomic layer deposition. Journal of Physical Chemistry C, 2015, 119( 35): 20591– 20599
https://doi.org/10.1021/acs.jpcc.5b06745
153 P Wen, Y H Sun, H Li, Z Q Liang, H H Wu, J C Zhang, H J Zeng, S M Geyer, L Jiang. A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B, 2020, 263 : 118180
https://doi.org/10.1016/j.apcatb.2019.118180
154 K Maeda, M Higashi, D L Lu, R Abe, K Domen. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 2010, 132( 16): 5858– 5868
https://doi.org/10.1021/ja1009025
155 X W Wang, G Liu, Z G Chen, F Li, L Z Wang, G Q Lu, H M Cheng. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009( 23): 3452– 3454
https://doi.org/10.1039/b904668b
156 H Kato, Y Sasaki, A Iwase, A Kudo. Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bulletin of the Chemical Society of Japan, 2007, 80( 12): 2457– 2464
https://doi.org/10.1246/bcsj.80.2457
157 S S Chen, J J M Vequizo, Z H Pan, T Hisatomi, M Nakabayashi, L H Lin, Z Wang, K Kato, A Yamakata, N Shibata. et al.. Surface modifications of (ZnSe)0.5(CuGa2.5Se4.25)0.5 to promote photocatalytic Z-scheme overall water splitting. Journal of the American Chemical Society, 2021, 143( 28): 10633– 10641
https://doi.org/10.1021/jacs.1c03555
158 B J Ng, L K Putri, X Y Kong, P Pasbakhsh, S P Chai. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1−x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chemical Engineering Journal, 2021, 404 : 127030
https://doi.org/10.1016/j.cej.2020.127030
159 Z L Wang, Z Chen, J D Dan, W Q Chen, C H Zhou, Z X Shen, Z C Sum, X S Wang. Improving photoelectrochemical activity of ZnO/TiO2 core-shell nanostructure through Ag nanoparticle integration. Catalysts, 2021, 11( 8): 911
https://doi.org/10.3390/catal11080911
160 S Lyu, Y Farre, L Ducasse, Y Pellegrin, T Toupance, C Olivier, F Odobel. Push-pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Advances, 2016, 6( 24): 19928– 19936
https://doi.org/10.1039/C5RA25899E
161 S Lyu, J Massin, M Pavone, A B Munoz-Garcia, C Labrugere, T Toupance, M Chavarot-Kerlidou, V Artero, C Olivier. H2-evolving dye-sensitized photocathode based on a ruthenium-diacetylide/cobaloxime supramolecular assembly. ACS Applied Energy Materials, 2019, 2( 7): 4971– 4980
https://doi.org/10.1021/acsaem.9b00652
162 J Massin, S Lyu, M Pavone, A B Munoz-Garcia, B Kauffmann, T Toupance, M Chavarot-Kerlidou, V Artero, C Olivier. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions (Cambridge, England), 2016, 45( 31): 12539– 12547
https://doi.org/10.1039/C6DT02177H
163 J Brillet, J H Yum, M Cornuz, T Hisatomi, R Solarska, J Augustynski, M Graetzel, K Sivula. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6( 12): 823– 827
https://doi.org/10.1038/nphoton.2012.265
164 J K Kim, K Shin, S M Cho, T W Lee, J H Park. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science, 2011, 4( 4): 1465– 1470
https://doi.org/10.1039/c0ee00469c
165 X C Fu, H Chang, Z C Shang, P L Liu, J K Liu, H A Luo. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2Tx MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal, 2020, 381 : 122001
https://doi.org/10.1016/j.cej.2019.122001
166 P Peerakiatkhajohn, J H Yun, S C Wang, L Z Wang. Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. Journal of Photonics for Energy, 2017, 7( 1): 012006
https://doi.org/10.1117/1.JPE.7.012006
167 J H Kim, Y Jo, J H Kim, J W Jang, H J Kang, Y H Lee, D S Kim, Y Jun, J S Lee. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano, 2015, 9( 12): 11820– 11829
https://doi.org/10.1021/acsnano.5b03859
168 J S Luo, J H Im, M T Mayer, M Schreier, M K Nazeeruddin, N G Park, S D Tilley, H J Fan, M Gratzel. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345( 6204): 1593– 1596
https://doi.org/10.1126/science.1258307
169 S C Wang, P Chen, Y Bai, J H Yun, G Liu, L Z Wang. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Advanced Materials, 2018, 30( 20): 1800486
https://doi.org/10.1002/adma.201800486
170 S Bera, S A Lee, W J Lee, J H Kim, C Kim, H G Kim, H Khan, S Jana, H W Jang, S H Kwon. Hierarchical nanoporous BiVO4 photoanodes with high charge separation and transport efficiency for water oxidation. ACS Applied Materials & Interfaces, 2021, 13( 12): 14304– 14314
https://doi.org/10.1021/acsami.1c00958
171 G K Mor, O K Varghese, R H T Wilke, S Sharma, K Shankar, T J Latempa, K S Choi, C A Grimes. p-Type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters, 2008, 8( 7): 1906– 1911
https://doi.org/10.1021/nl080572y
172 S Oh, H Song, J Oh. An optically and electrochemically decoupled monolithic photoelectrochemical cell for high-performance solar-driven water splitting. Nano Letters, 2017, 17( 9): 5416– 5422
https://doi.org/10.1021/acs.nanolett.7b02023
173 V Ganesh, M Alizadeh, A Shuhaimi, A Adreen, A Pandikumar, M Jayakumar, N M Huang, R Ramesh, K Baskar, S A Rahman. Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting. Journal of Alloys and Compounds, 2017, 706 : 629– 636
https://doi.org/10.1016/j.jallcom.2017.02.231
174 J J Zhu, J B Gudmundsdottir, R Strandbakke, K G Both, T Aarholt, P A Carvalho, M H Sorby, I J T Jensen, M N Guzik, T Norby, H Haug, A Chatzitakis. Double perovskite cobaltites integrated in a monolithic and noble metal-free photoelectrochemical device for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13( 17): 20313– 20325
https://doi.org/10.1021/acsami.1c01900
175 I Y Ahmet, S Berglund, A Chemseddine, P Bogdanoff, R F Präg, F F Abdi, de Krol R van. Planar and nanostructured n-Si/metal-oxide/WO3/BiVO4 monolithic tandem devices for unassisted solar water splitting. Advanced Energy and Sustainability Research, 2020, 1( 2): 2000037
https://doi.org/10.1002/aesr.202000037
176 S Vanka, B W Zhou, R A Awni, Z N Song, F A Chowdhury, X D Liu, H Hajibabaei, W Shi, Y X Xiao, I A Navid. et al.. InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Letters, 2020, 5( 12): 3741– 3751
https://doi.org/10.1021/acsenergylett.0c01583
[1] Huiying Quan, Kejiang Qian, Ying Xuan, Lan-Lan Lou, Kai Yu, Shuangxi Liu. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1561-1571.
[2] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[3] Huaping Zhao, Long Liu, Yong Lei. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Front. Chem. Sci. Eng., 2018, 12(3): 481-493.
[4] Timothy J. Wilson,Yijin Liu,David M. J. Lilley. Ribozyme and the mechanisms that underlie RNA catalysis[J]. Front. Chem. Sci. Eng., 2016, 10(2): 178-185.
[5] Ruixue GU, Guangming ZENG, Jingjing SHAO, Yuan LIU, Johannes W. Schwank, Yongdan LI. Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith[J]. Front Chem Sci Eng, 2013, 7(3): 270-278.
[6] WANG Qian, YAO Zhong, XUN Zhijing, XU Xiaoying, XU Hong, WEI Ping. Properties and catalytic mechanism of -glutamyltranspeptidase from NX-2 [J]. Front. Chem. Sci. Eng., 2008, 2(4): 456-461.
[7] GUAN Yu, PEI Aixia, GUO Liejin. Hydrogen production by catalytic gasification of cellulose in supercritical water[J]. Front. Chem. Sci. Eng., 2008, 2(2): 176-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed