|
|
Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites |
Yuxuan Xu1, Guanglong Dai1( ), Shibin Nie1( ), Jinian Yang2, Song Liu2, Hong Zhang1, Xiang Dong1 |
1. School of Safety Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China 2. School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.
|
Keywords
metal−organic framework
nickel phyllosilicate
whisker
epoxy resin
mechanical response
tribological performance
flammable property
|
Corresponding Author(s):
Guanglong Dai,Shibin Nie
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Online First Date: 27 June 2022
Issue Date: 17 October 2022
|
|
1 |
Y J Xue, M X Shen, S H Zeng, W Zhang, L Y Hao, L Yang, P A Song. A novel strategy for enhancing the flame resistance, dynamic mechanical and the thermal degradation properties of epoxy nanocomposites. Materials Research Express, 2019, 6( 12): 125003
https://doi.org/10.1088/2053-1591/ab537f
|
2 |
A A Azeez, K Y Rhee, S J Park, D Hui. Epoxy clay nanocomposites-processing, properties and applications: a review. Composites. Part B, Engineering, 2013, 45( 1): 308– 320
https://doi.org/10.1016/j.compositesb.2012.04.012
|
3 |
B Wetzel, F Haupert, M Q Zhang. Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003, 63( 14): 2055– 2067
https://doi.org/10.1016/S0266-3538(03)00115-5
|
4 |
J S Chen, J Yang, B B Chen, S Liu, J Z Dong, C S Li. Large-scale synthesis of NbSe2 nanosheets and their use as nanofillers for improving the tribological properties of epoxy coatings. Surface and Coatings Technology, 2016, 305 : 23– 28
https://doi.org/10.1016/j.surfcoat.2016.07.062
|
5 |
F Wu, W J Zhao, H Chen, Z X Zeng, X D Wu, Q J Xue. Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surface and Interface Analysis, 2017, 49( 2): 85– 92
https://doi.org/10.1002/sia.6062
|
6 |
J Song, Z D Dai, J Y Li, H C Zhao, L P Wang. Silane coupling agent modified BN-OH as reinforcing filler for epoxy nanocomposite. High Performance Polymers, 2019, 31( 1): 116– 123
https://doi.org/10.1177/0954008317748716
|
7 |
T P Mohan, K Kanny. Tribological studies of nanoclay filled epoxy hybrid laminates. Tribology Transactions, 2017, 60( 4): 681– 692
https://doi.org/10.1080/10402004.2016.1204039
|
8 |
S L Qiu, Y X Hu, Y Q Shi, Y B Hou, Y C Kan, F K Chu, H Sheng, R K K Yuen, W Y Xing. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites. Part A, Applied Science and Manufacturing, 2018, 114 : 407– 417
https://doi.org/10.1016/j.compositesa.2018.08.012
|
9 |
S Gupta, T Hammann, R Johnson, M F Riyad. Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58( 3): 560– 566
https://doi.org/10.1080/10402004.2014.996308
|
10 |
Z F Bian, S Kawi. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339 : 3– 23
https://doi.org/10.1016/j.cattod.2018.12.030
|
11 |
J N Yang, Z Y Li, Y X Xu, S B Nie, Y Liu. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27( 9): 274
https://doi.org/10.1007/s10965-020-02250-x
|
12 |
S B Nie, D Jin, Y X Xu, C Han, X Dong, J N Yang. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9( 5): 10189– 10197
https://doi.org/10.1016/j.jmrt.2020.07.021
|
13 |
J N Yang, X S Feng, S B Nie, Y X Xu, Z Y Li. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16( 4): 484– 497
https://doi.org/10.1007/s11705-021-2074-6
|
14 |
X W Shi, X Dai, Y Cao, J W Li, C G Huo, X L Wang. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Industrial & Engineering Chemistry Research, 2017, 56( 14): 3887– 3894
https://doi.org/10.1021/acs.iecr.6b04204
|
15 |
H Nabipour, X Wang, L Song, Y Hu. Metal-organic frameworks for flame retardant polymers application: a critical review. Composites. Part A, Applied Science and Manufacturing, 2020, 139 : 106113
https://doi.org/10.1016/j.compositesa.2020.106113
|
16 |
L Zhang, S Q Chen, Y T Pan, S D Zhang, S B Nie, P Wei, X Q Zhang, R Wang, D Y Wang. Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustainable Chemistry & Engineering, 2019, 7( 10): 9272– 9280
https://doi.org/10.1021/acssuschemeng.9b00174
|
17 |
J N Yang, Y X Xu, C Su, S B Nie, Z Y Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1281– 1295
https://doi.org/10.1007/s11705-020-2007-9
|
18 |
O M Yaghi, H Li, T L Groy. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. Journal of the American Chemical Society, 1996, 118( 38): 9096– 9101
https://doi.org/10.1021/ja960746q
|
19 |
L Kang, S X Sun, L B Kong, J W Lang, Y C Luo. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chemical Letters, 2014, 25( 6): 957– 961
https://doi.org/10.1016/j.cclet.2014.05.032
|
20 |
P Burattin, M Che, C Louis. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101( 36): 7060– 7074
https://doi.org/10.1021/jp970194d
|
21 |
Y Fukushima, M Tani. Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bulletin of the Chemical Society of Japan, 1996, 69( 12): 3667– 3671
https://doi.org/10.1246/bcsj.69.3667
|
22 |
L Liu, M H Zhu, X D Xu, X Li, Z W Ma, Z Jiang, A Pich, H Wang, P A Song. Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Advanced Materials, 2021, 33( 51): 2105829
https://doi.org/10.1002/adma.202105829
|
23 |
X D Xu, L J Li, S M Seraji, L Liu, Z Jiang, Z G Xu, X Li, S Zhao, H Wang, P A Song. Bioinspired, strong, and tough nanostructured poly(vinyl alcohol)/inositol composites: how hydrogen-bond cross-linking works?. Macromolecules, 2021, 54( 20): 9510– 9521
https://doi.org/10.1021/acs.macromol.1c01725
|
24 |
K Ohtsuka, J Koga, M Suda, M Ono. Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route. Journal of the American Ceramic Society, 1989, 72( 10): 1924– 1930
https://doi.org/10.1111/j.1151-2916.1989.tb06002.x
|
25 |
P Gérard, A Herbillon. Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clays and Clay Minerals, 1983, 31( 2): 143– 151
https://doi.org/10.1346/CCMN.1983.0310209
|
26 |
M G da Fonseca, C R Silva, J S Barone, C Airoldi. Layered hybrid nickel phyllosilicates and reactivity of the gallery space. Journal of Materials Chemistry, 2000, 10( 3): 789– 795
https://doi.org/10.1039/a907804e
|
27 |
X X Hang, Y D Xue, Y Cheng, M Du, L T Du, H Pang. From Co-MOF to CoNi-MOF to Ni-MOF: a facile synthesis of 1D micro-/nanomaterials. Inorganic Chemistry, 2021, 60( 17): 13168– 13176
https://doi.org/10.1021/acs.inorgchem.1c01561
|
28 |
J B Liang, R Z Ma, N B O Iyi, Y Ebina, K Takada, T Sasaki. Topochemical synthesis, anion exchange, and exfoliation of Co−Ni layered double hydroxides: a route to positively charged Co−Ni hydroxide nanosheets with tunable composition. Chemistry of Materials, 2010, 22( 2): 371– 378
https://doi.org/10.1021/cm902787u
|
29 |
Q Rong, L L Long, X Zhang, Y X Huang, H Q Yu. Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Applied Energy, 2015, 153 : 63– 69
https://doi.org/10.1016/j.apenergy.2014.11.077
|
30 |
C Qiu, J Jiang, L H Ai. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8( 1): 945– 951
https://doi.org/10.1021/acsami.5b10634
|
31 |
K Wang, J S Wu, L Ye, H M Zeng. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Composites. Part A, Applied Science and Manufacturing, 2003, 34( 12): 1199– 1205
https://doi.org/10.1016/j.compositesa.2003.07.004
|
32 |
M L Chan, K T Lau, T T Wong, M P Ho, D Hui. Mechanism of reinforcement in a nanoclay/polymer composite. Composites. Part B, Engineering, 2011, 42( 6): 1708– 1712
https://doi.org/10.1016/j.compositesb.2011.03.011
|
33 |
C L Wu, M Q Zhang, M Z Rong, K Friedrich. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 2002, 62( 10): 1327– 1340
https://doi.org/10.1016/S0266-3538(02)00079-9
|
34 |
X Y Ma, W D Zhang. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation & Stability, 2009, 94( 7): 1103– 1109
https://doi.org/10.1016/j.polymdegradstab.2009.03.024
|
35 |
H Kim, A A Abdala, C W Macosko. Graphene/polymer nanocomposites. Macromolecules, 2010, 43( 16): 6515– 6530
https://doi.org/10.1021/ma100572e
|
36 |
Z W Ma, X C Liu, X D Xu, L Liu, B Yu, C Maluk, G B Huang, H Wang, P A Song. Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano, 2021, 15( 7): 11667– 11680
https://doi.org/10.1021/acsnano.1c02254
|
37 |
L Liu, M H Zhu, Y Q Shi, X D Xu, Z W Ma, B Yu, S Y Fu, G B Huang, H Wang, P A Song. Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chemical Engineering Journal, 2021, 424 : 130338
https://doi.org/10.1016/j.cej.2021.130338
|
38 |
G B Lou, Z W Ma, J F Dai, Z C Bai, S Y Fu, S Q Huo, L J Qian, P A Song. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering, 2021, 9( 40): 13595– 13605
https://doi.org/10.1021/acssuschemeng.1c04718
|
39 |
L Liu, M H Zhu, Z W Ma, X D Xu, S M Seraji, B Yu, Z Q Sun, H Wang, P A Song. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430 : 132712
https://doi.org/10.1016/j.cej.2021.132712
|
40 |
S M Seraji, P A Song, R J Varley, S Bourbigot, D Voice, H Wang. Fire-retardant unsaturated polyester thermosets: the state-of-the-art, challenges and opportunities. Chemical Engineering Journal, 2022, 430 : 132785
https://doi.org/10.1016/j.cej.2021.132785
|
41 |
H Y Ma, P A Song, Z P Fang. Flame retarded polymer nanocomposites: development, trend and future perspective. Science China. Chemistry, 2011, 54( 2): 302– 313
https://doi.org/10.1007/s11426-010-4196-4
|
42 |
J N Yang, Y Liu, Y X Xu, S B Nie, Z Y Li. Property investigations of epoxy composites filled by nickel phyllosilicate-decorated graphene oxide. Journal of Materials Science, 2020, 55( 24): 10593– 10610
https://doi.org/10.1007/s10853-020-04765-6
|
43 |
N Myshkin, A Kovalev. Adhesion and surface forces in polymer tribology—a review. Friction, 2018, 6( 2): 143– 155
https://doi.org/10.1007/s40544-018-0203-0
|
44 |
A Dasari, Z Z Yu, Y W Mai. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering R: Reports, 2009, 63( 2): 31– 80
https://doi.org/10.1016/j.mser.2008.10.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|