Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (10) : 1493-1504    https://doi.org/10.1007/s11705-022-2168-9
RESEARCH ARTICLE
Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites
Yuxuan Xu1, Guanglong Dai1(), Shibin Nie1(), Jinian Yang2, Song Liu2, Hong Zhang1, Xiang Dong1
1. School of Safety Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
2. School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
 Download: PDF(18314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

Keywords metal−organic framework      nickel phyllosilicate      whisker      epoxy resin      mechanical response      tribological performance      flammable property     
Corresponding Author(s): Guanglong Dai,Shibin Nie   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 27 June 2022    Issue Date: 17 October 2022
 Cite this article:   
Yuxuan Xu,Guanglong Dai,Shibin Nie, et al. Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1493-1504.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2168-9
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I10/1493
  Scheme1 Schematic illustration of sample preparation.
Fig.1  (a) XRD and (b) FTIR for the Ni-MOF and NiPS whisker.
Fig.2  SEM morphology of (a) Ni-MOF, (b–c) NiPS whiskers, (d) TEM morphology of NiPS whiskers, and (e) elemental mapping of an individual NiPS whisker.
Fig.3  XPS spectra of (a) Ni-MOF and NiPS whiskers, deconvoluted XPS survey of (b) Ni 2p, (c) Si 2p and (d) O 1s in NiPS whiskers.
Fig.4  SEM images of fracture surface for EP nanocomposites containing (a) 0 phr, (b) 1 phr, (c) 3 phr, (d) 5 phr and (e, f) element mappings of Fig. 4(c).
Sample Tensile strength/ MPa Elastic modulus/ GPa Elongation at break/ %
0 phr 77.3 ± 3.4 1.26 ± 0.12 10.51 ± 0.20
1 phr 79.6 ± 2.5 1.51 ± 0.15 8.82 ± 0.38
3 phr 87.8 ± 3.5 1.85 ± 0.17 8.11 ± 0.34
5 phr 82.3 ± 2.3 1.97 ± 0.19 5.64 ± 0.25
Tab.1  Effect of NiPS whisker content on the mechanical properties of EP nanocomposites
Fig.5  Tensile stress-strain curves of EP nanocomposites containing a varied mass fraction of NiPS whiskers.
Sample Ti/°C (dW/dT)i/(%·K–1) Tp/°C (dW/dT)p/(%·K–1) Char/%
0 phr 362.3 –0.86 375.5 –2.28 14.8
1 phr 369.1 –0.75 387.5 –1.58 15.2
3 phr 366.8 –0.66 386.8 –1.43 18.4
5 phr 365.8 –0.65 386.3 –1.42 19.1
Tab.2  Effect of NiPS whiskers on the thermal stability of EP nanocomposites
Fig.6  (a) Weight and (b) derivative weight thermograms for EP nanocomposites containing varied NiPS whiskers.
Fig.7  Digital pictures of samples in vertical burning: (a) 0 phr, (b) 1 phr, (c) 3 phr and (d) 5 phr NiPS whiskers; SEM images for char layers derived from UL-94 tests for (e) 0 phr and (f) 5 phr NiPS whiskers.
Fig.8  Friction coefficient curves and the wear rate for the investigated samples.
Fig.9  SEM of worn surfaces for the investigated samples containing (a) 0 phr, (b)1 phr, (c) 3 phr and (d) 5 phr NiPS whiskers.
1 Y J Xue, M X Shen, S H Zeng, W Zhang, L Y Hao, L Yang, P A Song. A novel strategy for enhancing the flame resistance, dynamic mechanical and the thermal degradation properties of epoxy nanocomposites. Materials Research Express, 2019, 6( 12): 125003
https://doi.org/10.1088/2053-1591/ab537f
2 A A Azeez, K Y Rhee, S J Park, D Hui. Epoxy clay nanocomposites-processing, properties and applications: a review. Composites. Part B, Engineering, 2013, 45( 1): 308– 320
https://doi.org/10.1016/j.compositesb.2012.04.012
3 B Wetzel, F Haupert, M Q Zhang. Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003, 63( 14): 2055– 2067
https://doi.org/10.1016/S0266-3538(03)00115-5
4 J S Chen, J Yang, B B Chen, S Liu, J Z Dong, C S Li. Large-scale synthesis of NbSe2 nanosheets and their use as nanofillers for improving the tribological properties of epoxy coatings. Surface and Coatings Technology, 2016, 305 : 23– 28
https://doi.org/10.1016/j.surfcoat.2016.07.062
5 F Wu, W J Zhao, H Chen, Z X Zeng, X D Wu, Q J Xue. Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surface and Interface Analysis, 2017, 49( 2): 85– 92
https://doi.org/10.1002/sia.6062
6 J Song, Z D Dai, J Y Li, H C Zhao, L P Wang. Silane coupling agent modified BN-OH as reinforcing filler for epoxy nanocomposite. High Performance Polymers, 2019, 31( 1): 116– 123
https://doi.org/10.1177/0954008317748716
7 T P Mohan, K Kanny. Tribological studies of nanoclay filled epoxy hybrid laminates. Tribology Transactions, 2017, 60( 4): 681– 692
https://doi.org/10.1080/10402004.2016.1204039
8 S L Qiu, Y X Hu, Y Q Shi, Y B Hou, Y C Kan, F K Chu, H Sheng, R K K Yuen, W Y Xing. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites. Part A, Applied Science and Manufacturing, 2018, 114 : 407– 417
https://doi.org/10.1016/j.compositesa.2018.08.012
9 S Gupta, T Hammann, R Johnson, M F Riyad. Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58( 3): 560– 566
https://doi.org/10.1080/10402004.2014.996308
10 Z F Bian, S Kawi. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339 : 3– 23
https://doi.org/10.1016/j.cattod.2018.12.030
11 J N Yang, Z Y Li, Y X Xu, S B Nie, Y Liu. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27( 9): 274
https://doi.org/10.1007/s10965-020-02250-x
12 S B Nie, D Jin, Y X Xu, C Han, X Dong, J N Yang. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9( 5): 10189– 10197
https://doi.org/10.1016/j.jmrt.2020.07.021
13 J N Yang, X S Feng, S B Nie, Y X Xu, Z Y Li. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16( 4): 484– 497
https://doi.org/10.1007/s11705-021-2074-6
14 X W Shi, X Dai, Y Cao, J W Li, C G Huo, X L Wang. Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Industrial & Engineering Chemistry Research, 2017, 56( 14): 3887– 3894
https://doi.org/10.1021/acs.iecr.6b04204
15 H Nabipour, X Wang, L Song, Y Hu. Metal-organic frameworks for flame retardant polymers application: a critical review. Composites. Part A, Applied Science and Manufacturing, 2020, 139 : 106113
https://doi.org/10.1016/j.compositesa.2020.106113
16 L Zhang, S Q Chen, Y T Pan, S D Zhang, S B Nie, P Wei, X Q Zhang, R Wang, D Y Wang. Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustainable Chemistry & Engineering, 2019, 7( 10): 9272– 9280
https://doi.org/10.1021/acssuschemeng.9b00174
17 J N Yang, Y X Xu, C Su, S B Nie, Z Y Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1281– 1295
https://doi.org/10.1007/s11705-020-2007-9
18 O M Yaghi, H Li, T L Groy. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. Journal of the American Chemical Society, 1996, 118( 38): 9096– 9101
https://doi.org/10.1021/ja960746q
19 L Kang, S X Sun, L B Kong, J W Lang, Y C Luo. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chemical Letters, 2014, 25( 6): 957– 961
https://doi.org/10.1016/j.cclet.2014.05.032
20 P Burattin, M Che, C Louis. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101( 36): 7060– 7074
https://doi.org/10.1021/jp970194d
21 Y Fukushima, M Tani. Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bulletin of the Chemical Society of Japan, 1996, 69( 12): 3667– 3671
https://doi.org/10.1246/bcsj.69.3667
22 L Liu, M H Zhu, X D Xu, X Li, Z W Ma, Z Jiang, A Pich, H Wang, P A Song. Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Advanced Materials, 2021, 33( 51): 2105829
https://doi.org/10.1002/adma.202105829
23 X D Xu, L J Li, S M Seraji, L Liu, Z Jiang, Z G Xu, X Li, S Zhao, H Wang, P A Song. Bioinspired, strong, and tough nanostructured poly(vinyl alcohol)/inositol composites: how hydrogen-bond cross-linking works?. Macromolecules, 2021, 54( 20): 9510– 9521
https://doi.org/10.1021/acs.macromol.1c01725
24 K Ohtsuka, J Koga, M Suda, M Ono. Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route. Journal of the American Ceramic Society, 1989, 72( 10): 1924– 1930
https://doi.org/10.1111/j.1151-2916.1989.tb06002.x
25 P Gérard, A Herbillon. Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clays and Clay Minerals, 1983, 31( 2): 143– 151
https://doi.org/10.1346/CCMN.1983.0310209
26 M G da Fonseca, C R Silva, J S Barone, C Airoldi. Layered hybrid nickel phyllosilicates and reactivity of the gallery space. Journal of Materials Chemistry, 2000, 10( 3): 789– 795
https://doi.org/10.1039/a907804e
27 X X Hang, Y D Xue, Y Cheng, M Du, L T Du, H Pang. From Co-MOF to CoNi-MOF to Ni-MOF: a facile synthesis of 1D micro-/nanomaterials. Inorganic Chemistry, 2021, 60( 17): 13168– 13176
https://doi.org/10.1021/acs.inorgchem.1c01561
28 J B Liang, R Z Ma, N B O Iyi, Y Ebina, K Takada, T Sasaki. Topochemical synthesis, anion exchange, and exfoliation of Co−Ni layered double hydroxides: a route to positively charged Co−Ni hydroxide nanosheets with tunable composition. Chemistry of Materials, 2010, 22( 2): 371– 378
https://doi.org/10.1021/cm902787u
29 Q Rong, L L Long, X Zhang, Y X Huang, H Q Yu. Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Applied Energy, 2015, 153 : 63– 69
https://doi.org/10.1016/j.apenergy.2014.11.077
30 C Qiu, J Jiang, L H Ai. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8( 1): 945– 951
https://doi.org/10.1021/acsami.5b10634
31 K Wang, J S Wu, L Ye, H M Zeng. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Composites. Part A, Applied Science and Manufacturing, 2003, 34( 12): 1199– 1205
https://doi.org/10.1016/j.compositesa.2003.07.004
32 M L Chan, K T Lau, T T Wong, M P Ho, D Hui. Mechanism of reinforcement in a nanoclay/polymer composite. Composites. Part B, Engineering, 2011, 42( 6): 1708– 1712
https://doi.org/10.1016/j.compositesb.2011.03.011
33 C L Wu, M Q Zhang, M Z Rong, K Friedrich. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 2002, 62( 10): 1327– 1340
https://doi.org/10.1016/S0266-3538(02)00079-9
34 X Y Ma, W D Zhang. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation & Stability, 2009, 94( 7): 1103– 1109
https://doi.org/10.1016/j.polymdegradstab.2009.03.024
35 H Kim, A A Abdala, C W Macosko. Graphene/polymer nanocomposites. Macromolecules, 2010, 43( 16): 6515– 6530
https://doi.org/10.1021/ma100572e
36 Z W Ma, X C Liu, X D Xu, L Liu, B Yu, C Maluk, G B Huang, H Wang, P A Song. Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano, 2021, 15( 7): 11667– 11680
https://doi.org/10.1021/acsnano.1c02254
37 L Liu, M H Zhu, Y Q Shi, X D Xu, Z W Ma, B Yu, S Y Fu, G B Huang, H Wang, P A Song. Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chemical Engineering Journal, 2021, 424 : 130338
https://doi.org/10.1016/j.cej.2021.130338
38 G B Lou, Z W Ma, J F Dai, Z C Bai, S Y Fu, S Q Huo, L J Qian, P A Song. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering, 2021, 9( 40): 13595– 13605
https://doi.org/10.1021/acssuschemeng.1c04718
39 L Liu, M H Zhu, Z W Ma, X D Xu, S M Seraji, B Yu, Z Q Sun, H Wang, P A Song. A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430 : 132712
https://doi.org/10.1016/j.cej.2021.132712
40 S M Seraji, P A Song, R J Varley, S Bourbigot, D Voice, H Wang. Fire-retardant unsaturated polyester thermosets: the state-of-the-art, challenges and opportunities. Chemical Engineering Journal, 2022, 430 : 132785
https://doi.org/10.1016/j.cej.2021.132785
41 H Y Ma, P A Song, Z P Fang. Flame retarded polymer nanocomposites: development, trend and future perspective. Science China. Chemistry, 2011, 54( 2): 302– 313
https://doi.org/10.1007/s11426-010-4196-4
42 J N Yang, Y Liu, Y X Xu, S B Nie, Z Y Li. Property investigations of epoxy composites filled by nickel phyllosilicate-decorated graphene oxide. Journal of Materials Science, 2020, 55( 24): 10593– 10610
https://doi.org/10.1007/s10853-020-04765-6
43 N Myshkin, A Kovalev. Adhesion and surface forces in polymer tribology—a review. Friction, 2018, 6( 2): 143– 155
https://doi.org/10.1007/s40544-018-0203-0
44 A Dasari, Z Z Yu, Y W Mai. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering R: Reports, 2009, 63( 2): 31– 80
https://doi.org/10.1016/j.mser.2008.10.001
[1] FCE-21102-OF-XY_suppl_1 Download
[1] Jinian Yang, Xuesong Feng, Shibin Nie, Yuxuan Xu, Zhenyu Li. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(4): 484-497.
[2] Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1281-1295.
[3] Gang Tang, Ruiqing Zhao, Dan Deng, Yadong Yang, Depeng Chen, Bing Zhang, Xinliang Liu, Xiuyu Liu. Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1269-1280.
[4] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[5] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
[6] ZHANG Daohong, JIA Demin, HUANG Xianbo. Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin[J]. Front. Chem. Sci. Eng., 2007, 1(4): 349-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed