Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (1) : 15-23    https://doi.org/10.1007/s11705-022-2177-8
RESEARCH ARTICLE
Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate
Qi Qu1, Chuan Zeng5, Jing Huang5, Mengfan Wang1,2,4(), Wei Qi1,3,4, Zhimin He1
1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, China
2. School of Life Sciences, Tianjin University, Tianjin 300072, China
3. Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
4. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
5. Technical Centre of Gongbei Customs District of China, Zhuhai 519000, China
 Download: PDF(9120 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, various semiconductor/metal composites have been developed to fabricate surface-enhanced Raman spectroscopy substrates. However, low metal loading on semiconductors is still a challenge. In this study, cystine was introduced to increase the accumulation of gold nanoparticles on zinc oxide, owing to the biomineralization property of cystine. Morphological analysis revealed that the obtained ZnO/Au/cystine composite not only had a higher metal loading but also formed a porous structure, which is beneficial for Raman performance. Compared with ZnO/Au, the ZnO/Au/cystine substrate displayed a 40-fold enhancement in the Raman signal and a lower limit of detection (10–11 mol·L−1) in the detection of rhodamine 6G. Moreover, the substrate has favorable homogeneity and stability. Finally, ZnO/Au/cystine displayed excellent performance toward crystal violet and methylene blue in a test based on river water samples. This study provided a promising method to fabricate sensitive semiconductor/noble metal-based surface-enhanced Raman spectroscopy substrates for Raman detection.

Keywords biomineralization      cystine      semiconductor/metal composite      SERS detection      Raman detection     
Corresponding Author(s): Mengfan Wang   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 01 August 2022    Issue Date: 21 February 2023
 Cite this article:   
Qi Qu,Chuan Zeng,Jing Huang, et al. Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate[J]. Front. Chem. Sci. Eng., 2023, 17(1): 15-23.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2177-8
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I1/15
  Scheme1 Schematic diagram for the fabrication of the ZnO/Au/cys substrate and SERS detection.
Fig.1  SEM image of (a) ZnO/Au, (b) ZnO/Au/cys and (c) the magnified view of ZnO/Au/cys; (d) XRD patterns of ZnO/Au/cys, ZnO/cys and ZnO/Au; (e) elemental analysis of ZnO/Au/cys.
Fig.2  XPS spectra of (a) ZnO/Au/cys and (b–f) the Zn 2p, Au 4f, Zn 3p, O 1s, S 2p, and N 1s spectra of ZnO/Au/cys, ZnO/cys, and ZnO/Au.
Fig.3  Raman spectra of 10–6 mol·L?1 R6G detected on (a) ZnO/Au and ZnO/Au/cys; (b) Raman spectra of different concentrations of R6G (10–6–10–11 mol·L?1) detected on ZnO/Au/cys; (c) the linear relationship between Raman intensity at 1510 cm–1 and the concentration of R6G.
Fig.4  (a) Homogeneity and (b) stability of ZnO/Au/cys.
Analyte Found in sample Analyte added/ (nmol·L?1) Total found/ (nmol·L?1) Recovery/%
CV Not detected 10 11.4 ± 0.4 114
100 80.8 ±1.4 81
1000 901 ± 17 90
MB Not detected 10 8.9 ± 0.5 89
100 94 ± 17 94
1000 1230 ± 140 123
Tab.1  Raman detection of CV and MB in river water based on ZnO/Au/cys substrate
Fig.5  Raman spectra of real river water samples containing different concentrations of (a) CV and (b) MB.
1 M Fan, G F S Andrade, A G Brolo. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 2020, 1097 : 1– 29
https://doi.org/10.1016/j.aca.2019.11.049
2 J Neng, Q Zhang, P L Sun. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics, 2020, 167 : 112480
https://doi.org/10.1016/j.bios.2020.112480
3 C Zong, M Xu, L J Xu, T Wei, X Ma, X S Zheng, R Hu, B Ren. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews, 2018, 118( 10): 4946– 4980
https://doi.org/10.1021/acs.chemrev.7b00668
4 D Cialla May, X S Zheng, K Weber, J Popp. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017, 46( 13): 3945– 3961
https://doi.org/10.1039/C7CS00172J
5 M L Xu, Y Gao, X X Han, B Zhao. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. Journal of Agricultural and Food Chemistry, 2017, 65( 32): 6719– 6726
https://doi.org/10.1021/acs.jafc.7b02504
6 A Chakraborty, A Ghosh, A Barui. Advances in surface-enhanced Raman spectroscopy for cancer diagnosis and staging. Journal of Raman Spectroscopy, 2020, 51( 1): 7– 36
https://doi.org/10.1002/jrs.5726
7 B Yang, Y Wang, S Guo, S Jin, E Park, L Chen, Y M Jung. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bulletin of the Korean Chemical Society, 2021, 42( 11): 1411– 1418
https://doi.org/10.1002/bkcs.12387
8 B Sharma, R R Frontiera, A I Henry, E Ringe, R P Van Duyne. SERS: materials, applications, and the future. Materials Today, 2012, 15( 1-2): 16– 25
https://doi.org/10.1016/S1369-7021(12)70017-2
9 T Itoh, Y S Yamamoto. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst (London), 2016, 141( 17): 5000– 5009
https://doi.org/10.1039/C6AN00936K
10 M Yang, J Yu, F Lei, H Zhou, Y Wei, B Man, C Zhang, C Li, J Ren, X Yuan. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability. Sensors and Actuators B: Chemical, 2018, 256 : 268– 275
https://doi.org/10.1016/j.snb.2017.09.197
11 S Hsieh, P Y Lin, L Y Chu. Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces. Journal of Physical Chemistry C, 2014, 118( 23): 12500– 12505
https://doi.org/10.1021/jp503202f
12 L Yang, W Wang, H Jiang, Q Zhang, H Shan, M Zhang, K Zhu, J Lv, G He, Z Sun. Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles. Sensors and Actuators B: Chemical, 2017, 242 : 932– 939
https://doi.org/10.1016/j.snb.2016.09.162
13 P Li, X Wang, X Zhang, L Zhang, X Yang, B Zhao. Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: doping induced band-gap shrinkage. Frontiers in Chemistry, 2019, 7 : 144
https://doi.org/10.3389/fchem.2019.00144
14 Q K Doan, M H Nguyen, C D Sai, V T Pham, H H Mai, N H Pham, T C Bach, V T Nguyen, T T Nguyen, K H Ho, T H Tran. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self-cleaning surface enhanced Raman applications. Applied Surface Science, 2020, 505 : 7
https://doi.org/10.1016/j.apsusc.2019.144593
15 Y Liu, H Ma, X X Han, B Zhao. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021, 8( 2): 370– 382
https://doi.org/10.1039/D0MH01356K
16 X X Han, W Ji, B Zhao, Y Ozaki. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017, 9( 15): 4847– 4861
https://doi.org/10.1039/C6NR08693D
17 B Yang, S Jin, S Guo, Y Park, L Chen, B Zhao, Y M Jung. Recent development of SERS technology: semiconductor-based study. ACS Omega, 2019, 4( 23): 20101– 20108
https://doi.org/10.1021/acsomega.9b03154
18 A Araújo, A Pimentel, M J Oliveira, M J Mendes, R Franco, E Fortunato, H Águas, R Martins. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2( 1): 014001
https://doi.org/10.1088/2058-8585/2/1/014001
19 A Pimentel, A Araújo, B Coelho, D Nunes, M Oliveira, M Mendes, H Águas, R Martins, E Fortunato. 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms. Materials, 2017, 10( 12): 1351
https://doi.org/10.3390/ma10121351
20 W Kim, S H Lee, J H Kim, Y J Ahn, Y H Kim, J S Yu, S Choi. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano, 2018, 12( 7): 7100– 7108
https://doi.org/10.1021/acsnano.8b02917
21 G Barbillon, O Graniel, M Bechelany. Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram. Nanomaterials, 2021, 11( 9): 2174
https://doi.org/10.3390/nano11092174
22 O Graniel, I Iatsunskyi, E Coy, C Humbert, G Barbillon, T Michel, D Maurin, S Balme, P Miele, M Bechelany. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C, 2019, 7( 47): 15066– 15073
https://doi.org/10.1039/C9TC05929F
23 S Dong, Y Wang, Z Liu, W Zhang, K Yi, X Zhang, X Zhang, C Jiang, S Yang, F Wang, X Xiao. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Applied Materials & Interfaces, 2020, 12( 4): 5136– 5146
https://doi.org/10.1021/acsami.9b21333
24 K Liu, C Q Yuan, Q L Zou, Z C Xie, X H Yan. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition, 2017, 56( 27): 7876– 7880
https://doi.org/10.1002/anie.201704678
25 M Guan, M Wang, W Qi, R Su, Z He. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2020, 15( 2): 310– 318
https://doi.org/10.1007/s11705-020-1940-y
26 M Ejgenberg, Y Mastai. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12( 10): 4995– 5001
https://doi.org/10.1021/cg300935k
27 O W Moe. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367( 9507): 333– 344
https://doi.org/10.1016/S0140-6736(06)68071-9
28 N R Jana, L Gearheart, C J Murphy. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17( 22): 6782– 6786
https://doi.org/10.1021/la0104323
29 L L Yang, Y Yang, Y F Ma, S Li, Y Q Wei, Z R Huang, N V Long. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials, 2017, 7( 11): 398
https://doi.org/10.3390/nano7110398
30 V Subramanian, E E Wolf, P V Kamat. Green emission to probe photoinduced charging events in ZnO−Au nanoparticles. Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B, 2003, 107( 30): 7479– 7485
https://doi.org/10.1021/jp0275037
31 R G Nuzzo, F A Fusco, D L Allara. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society, 1987, 109( 8): 2358– 2368
https://doi.org/10.1021/ja00242a020
32 R G Nuzzo, D L Allara. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105( 13): 4481– 4483
https://doi.org/10.1021/ja00351a063
33 R G Nuzzo, B R Zegarski, L H Dubois. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society, 1987, 109( 3): 733– 740
https://doi.org/10.1021/ja00237a017
34 A K Pal, S Pagal, K Prashanth, G K Chandra, S Umapathy, D B Mohan. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sensors and Actuators B: Chemical, 2019, 279 : 157– 169
https://doi.org/10.1016/j.snb.2018.09.085
35 S Bharadwaj, A Pandey, B Yagci, V Ozguz, A Qureshi. Graphene nano−mesh−Ag−ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chemical Engineering Journal, 2018, 336 : 445– 455
https://doi.org/10.1016/j.cej.2017.12.040
36 J Zhang, X Liu, S Wu, B Cao, S Zheng. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sensors and Actuators B: Chemical, 2012, 169 : 61– 66
https://doi.org/10.1016/j.snb.2012.02.070
37 Z F Ma, H L Han. One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 317( 1-3): 229– 233
https://doi.org/10.1016/j.colsurfa.2007.10.018
38 R Di Felice, A Selloni. Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. Journal of Chemical Physics, 2004, 120( 10): 4906– 4914
https://doi.org/10.1063/1.1645789
39 D Qi, L Lu, L Wang, J Zhang. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. Journal of the American Chemical Society, 2014, 136( 28): 9886– 9889
https://doi.org/10.1021/ja5052632
40 M Macias Montero, R J Pelaez, V J Rico, Z Saghi, P Midgley, C N Afonso, A R Gonzalez Elipe, A Borras. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. ACS Applied Materials & Interfaces, 2015, 7( 4): 2331– 2339
https://doi.org/10.1021/am506622x
41 X He, H Wang, Z Li, D Chen, J Liu, Q Zhang. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO−Ag nanorod hybrids. Nanoscale, 2015, 7( 18): 8619– 8626
https://doi.org/10.1039/C4NR07655A
[1] FCE-22005-OF-QQ_suppl_1 Download
[1] Miao Guan, Mengfan Wang, Wei Qi, Rongxin Su, Zhimin He. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine[J]. Front. Chem. Sci. Eng., 2021, 15(2): 310-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed