Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (11) : 1632-1642    https://doi.org/10.1007/s11705-022-2187-6
RESEARCH ARTICLE
A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents
Xiyuan Bu1, Ming Tian1,2, Hongqing Wang2, Lin Wang1, Liyong Yuan1(), Weiqun Shi1
1. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
 Download: PDF(4807 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although metal–organic frameworks offer a new platform for developing versatile sorption materials, yet coordinating the functionality, structure and component of these materials remains a great challenge. It depends on a comprehensive knowledge of a “real sorption mechanism”. Herein, a ternary mechanism for U(VI) uptake in metal–organic frameworks was reported. Analogous MIL-100s (Al, Fe, Cr) were prepared and studied for their ability to sequestrate U(VI) from aqueous solutions. As a result, MIL-100(Al) performed the best among the tested materials, and MIL-100(Cr) performed the worst. The nuclear magnetic resonance technique combined with energy-dispersive X-ray spectroscopy and zeta potential measurement reveal that U(VI) uptake in the three metal–organic frameworks involves different mechanisms. Specifically, hydrated uranyl ions form outer-sphere complexes in the surface of MIL-100s (Al, Fe) by exchanging with hydrogen ions of terminal hydroxyl groups (Al-OH2, Fe-OH2), and/or, hydrated uranyl ions are bound directly to Al(III) center in MIL-100(Al) through a strong inner-sphere coordination. For MIL-100(Cr), however, the U(VI) uptake is attributed to electrostatic attraction. Besides, the sorption mechanism is also pH and ionic strength dependent. The present study suggests that changing metal center of metal–organic frameworks and sorption conditions alters sorption mechanism, which helps to construct effective metal–organic frameworks-based sorbents for water purification.

Keywords U(VI)      metal–organic frameworks      adsorption mechanism      metal node     
Corresponding Author(s): Liyong Yuan   
Online First Date: 28 September 2022    Issue Date: 13 December 2022
 Cite this article:   
Xiyuan Bu,Ming Tian,Hongqing Wang, et al. A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1632-1642.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2187-6
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I11/1632
Fig.1  Characterizations of the MIL-100 samples. (a) PXRD patterns; (b) TGA curves; (c) N2 adsorption and desorption isotherms.
Fig.2  The U(VI) uptake in MOFs. (a) Bar graph illustrating the adsorption capacities in several analogous MIL-MOFs (pH = 5 ± 0.1; t = 360 min; msorbent/Vsolution = 0.4 mg·mL–1; [U]initial = 100 mg·L–1). (b) pH dependence (t = 360 min; msorbent/Vsolution = 0.4 mg·mL–1; [U]initial = 100 mg·L–1). (c) Sorption kinetics (pH = 5 ± 0.1; msorbent/Vsolution = 0.4 mg·mL–1; [U]initial = 100 mg·L–1). (d) Sorption isotherms (pH = 5 ± 0.1; t = 360 min; msorbent/Vsolution = 0.4 mg·mL–1).
Fig.3  (a) Effect of ionic strength (pH = 5 ± 0.1; t = 360 min; msorbent/Vsolution = 0.4 mg·mL–1; [U]initial = 100 mg·L–1); (b) competing cations on U(VI) uptake in MIL-100s (Al, Fe, Cr). The concentration of all metal ions was 0.5 mmol·L–1. msorbent/Vsolution = 0.4 mg·mL–1; pH = 5 ± 0.1;t = 360 min.
Fig.4  (a) Zeta Potential of MIL-100; (b) 27Al NMR spectra of pristine MIL-100(Al) (dark line) and after uranyl ion adsorption (red line); (c) fitting line of 27Al NMR spectra of pristine MIL-100(Al); (d) after adsorption of U(VI).
1 M S Dresselhaus, I L Thomas. Alternative energy technologies. Nature, 2001, 414( 6861): 332– 337
https://doi.org/10.1038/35104599
2 S C Whitfield, E A Rosa, A Dan, T Dietz. The future of nuclear power: value orientations and risk perception. Risk Analysis, 2009, 29( 3): 425– 437
https://doi.org/10.1111/j.1539-6924.2008.01155.x
3 R Chakravarty, A Dash. Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. Journal of Radioanalytical and Nuclear Chemistry, 2013, 299( 1): 741– 757
https://doi.org/10.1007/s10967-013-2823-1
4 D X Yang, S Song, Y D Zou, X X Wang, S J Yu, T Wen, H Q Wang, T Hayat, A Alsaedi, X K Wang. Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chemical Engineering Journal, 2017, 323 : 143– 152
https://doi.org/10.1016/j.cej.2017.03.158
5 X X Wang, L Chen, L Wang, Q H Fan, D Q Pan, J X Li, F T Chi, Y Xie, S J Yu, C L Xiao, F Luo, J Wang, X Wang, C Chen, W Wu, W Shi, S Wang, X Wang. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62( 8): 933– 967
https://doi.org/10.1007/s11426-019-9492-4
6 J P Yu, LY Yuan, S Wang, J H Lan, L R Zheng, C Xu, J Chen, L Wang, Z W Huang, W Q Tao, Z R Liu, Z F Chai, J K Gibson, W Q Shi. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chemistry, 2019, 1( 3): 286– 295
7 Z Ahmad, Y Li, S Ali, J J Yang, F Jan, Y Fan, X Y Gou, Q Y Sun, J P Chen. Benignly-fabricated supramolecular poly(amidoxime)-alginate-poly(acrylic acid) beads synergistically enhance uranyl capture from seawater. Chemical Engineering Journal, 2022, 441 : 136076
https://doi.org/10.1016/j.cej.2022.136076
8 Z Ahmad, Y Li, J J Yang, N B Geng, Y Fan, X Y Gou, Q Y Sun, J P Chen. A membrane-supported bifunctional poly(amidoxime-ethyleneimine) network for enhanced uranium extraction from seawater and wastewater. Journal of Hazardous Materials, 2022, 425 : 127995
https://doi.org/10.1016/j.jhazmat.2021.127995
9 Y Xie, C L Chen, X M Ren, X X Wang, H Y Wang, X K Wang. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 2019, 103 : 180– 234
https://doi.org/10.1016/j.pmatsci.2019.01.005
10 N Zhang, W T Peng, H Guo, H H Wang, Y Li, J Liu, S L Zhang, P Mei, T Hayat, Y Sun. Fabrication of porous carbon and application of Eu(III) removal from aqueous solutions. Journal of Molecular Liquids, 2019, 280 : 34– 39
https://doi.org/10.1016/j.molliq.2019.01.156
11 B N Zheng, X D Lin, X C Zhang, D C Wu, K Matyjaszewski. Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Advanced Functional Materials, 2019, 30( 41): 1907006
https://doi.org/10.1002/adfm.201907006
12 C Kim, S S Lee, K T Kwan, J Lee, W Li, B J Lafferty, D E Giammar, J D Fortner. Surface functionalized nanoscale metal oxides for arsenic(V), chromium(VI), and uranium(VI) sorption: considering single- and multi-sorbate dynamics. Environmental Science: Nano, 2020, 7( 12): 3805– 3813
https://doi.org/10.1039/D0EN00728E
13 K D Li, T Xiong, J Liao, Y Q Lei, Y Zhang, W K Zhu. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chemical Engineering Journal, 2022, 433 : 134449
https://doi.org/10.1016/j.cej.2021.134449
14 T Liu, R Q Zhang, M W Chen, Y J Liu, Z J Xie, S Tang, Y H Yuan, N Wang. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Advanced Functional Materials, 2021, 32( 14): 2111049
https://doi.org/10.1002/adfm.202111049
15 N Boulanger, A S Kuzenkova, A Iakunkov, A Y Romanchuk, A L Trigub, A V Egorov, S Bauters, L Amidani, M Retegan, K O Kvashnina, S N Kalmykov, A V Talyzin. Enhanced sorption of radionuclides by defect-rich graphene oxide. ACS Applied Materials & Interfaces, 2020, 12( 40): 45122– 45135
https://doi.org/10.1021/acsami.0c11122
16 A Jana, A Unni, S S Ravuru, A Das, D Das, S Biswas, H Sheshadri, S De. In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor. Chemical Engineering Journal, 2022, 428 : 131180
https://doi.org/10.1016/j.cej.2021.131180
17 X L Guo, Y Ruan, Z H Diao, K Shih, M H Su, G Song, D Y Chen, S Wang, L J Kong. Environmental-friendly preparation of Ni–Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium(VI). Journal of Cleaner Production, 2021, 308 : 127384
https://doi.org/10.1016/j.jclepro.2021.127384
18 Z Chen, M R Mian, S J Lee, H Chen, X Zhang, K O Kirlikovali, S Shulda, P Melix, A S Rosen, P A Parilla, T Gennett, R Q Snurr, T Islamoglu, T Yildirim, O K Farha. Fine-tuning a robust metal–organic framework toward enhanced clean energy gas storage. Journal of the American Chemical Society, 2021, 143( 45): 18838– 18843
https://doi.org/10.1021/jacs.1c08749
19 Y F Zhang, Z H Zhang, L Ritter, H Fang, Q Wang, B Space, Y B Zhang, D X Xue, J Bai. New reticular chemistry of the rod secondary building unit: synthesis, structure, and natural gas storage of a series of three-way rod amide-functionalized metal–organic frameworks. Journal of the American Chemical Society, 2021, 143( 31): 12202– 12211
https://doi.org/10.1021/jacs.1c04946
20 W Gong, Y Xie, T D Pham, S Shetty, F A Son, K B Idrees, Z Chen, H Xie, Y Liu, R Q Snurr, B Chen, B Alameddine, Y Cui, O K Farha. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. Journal of the American Chemical Society, 2022, 144( 8): 3737– 3745
https://doi.org/10.1021/jacs.2c00011
21 J Pei, X W Gu, C C Liang, B Chen, B Li, G Qian. Robust and radiation-resistant hofmann-type metal–organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 2022, 144( 7): 3200– 3209
https://doi.org/10.1021/jacs.1c12873
22 L Shu, Y Peng, R Yao, H L Song, C Y Zhu, W S Yang. Flexible soft-solid metal–organic framework composite membranes for H2/CO2 separation. Angewandte Chemie International Edition, 2022, 61( 14): e202117577
https://doi.org/10.1002/anie.202117577
23 E Moumen, L Bazzi, S El Hankari. Metal–organic frameworks and their composites for the adsorption and sensing of phosphate. Coordination Chemistry Reviews, 2022, 455 : 214376
https://doi.org/10.1016/j.ccr.2021.214376
24 A E Platero-Prats, A Mavrandonakis, J Liu, Z Chen, Z Chen, Z Li, A A Yakovenko, L C Gallington, J T Hupp, O K Farha, C J Cramer, K W Chapman. The molecular path approaching the active site in catalytic metal–organic frameworks. Journal of the American Chemical Society, 2021, 143( 48): 20090– 20094
https://doi.org/10.1021/jacs.1c11213
25 S Mallakpour, E Nikkhoo, C M Hussain. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451 : 214262
https://doi.org/10.1016/j.ccr.2021.214262
26 M Carboni, C W Abney, S Liu, W Lin. Highly porous and stable metal–organic frameworks for uranium extraction. Chemical Science (Cambridge), 2013, 4( 6): 2396
https://doi.org/10.1039/c3sc50230a
27 Z Q Bai, L Y Yuan, L Zhu, Z R Liu, S Q Chu, L R Zheng, J Zhang, Z F Chai, W Q Shi. Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. Journal of Materials Chemistry A, 2015, 3( 2): 525– 534
https://doi.org/10.1039/C4TA04878D
28 N Zhang, L Y Yuan, W L Guo, S Z Luo, Z F Chai, W Q Shi. Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Applied Materials & Interfaces, 2017, 9( 30): 25216– 25224
https://doi.org/10.1021/acsami.7b04192
29 L Y Yuan, M Tian, J H Lan, X Z Cao, X L Wang, Z F Chai, J K Gibson, W Q Shi. Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications (Cambridge), 2018, 54( 4): 370– 373
https://doi.org/10.1039/C7CC07527H
30 J W Yoon, H Chang, S J Lee, Y K Hwang, D Y Hong, S K Lee, J S Lee, S Jang, T U Yoon, K Kwac, Y Jung, R S Pillai, F Faucher, A Vimont, M Daturi, G Férey, C Serre, G Maurin, Y S Bae, J S Chang. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nature Materials, 2017, 16( 5): 526– 531
https://doi.org/10.1038/nmat4825
31 M M Tong, D H Liu, Q Y Yang, S Devautour-Vinot, G Maurin, C L Zhong. Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. Journal of Materials Chemistry A, 2013, 1( 30): 8534
https://doi.org/10.1039/c3ta11807j
32 Z H Zhang, J H Lan, L Y Yuan, P P Sheng, M Y He, L R Zheng, Q Chen, Z F Chai, J K Gibson, W Q Shi. Rational construction of porous metal–organic frameworks for uranium(VI) extraction: the strong periodic tendency with a metal node. ACS Applied Materials & Interfaces, 2020, 12( 12): 14087– 14094
https://doi.org/10.1021/acsami.0c02121
33 G Férey, C Serre, C Mellot-Draznieks, F Millange, S Surblé, J Dutour, I Margiolaki. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angewandte Chemie International Edition, 2004, 43( 46): 6296– 6301
https://doi.org/10.1002/anie.200460592
34 P Horcajada, S Surble, C Serre, D Y Hong, Y K Seo, J S Chang, J M Greneche, I Margiolaki, G Ferey. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications (Cambridge), 2007, 27( 27): 2820– 2822
https://doi.org/10.1039/B704325B
35 C Volkringer, D Popov, T Loiseau, G R Férey, M Burghammer, C Riekel, M Haouas, F Taulelle. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal–organic framework aluminum trimesate MIL-100. Chemistry of Materials, 2009, 21( 24): 5695– 5697
https://doi.org/10.1021/cm901983a
36 M Haouas, C Volkringer, T Loiseau, G Férey, F Taulelle. Monitoring the activation process of the giant pore MIL-100(Al) by solid state NMR. Journal of Physical Chemistry C, 2011, 115( 36): 17934– 17944
https://doi.org/10.1021/jp206513v
37 J J Low, A I Benin, P Jakubczak, J F Abrahamian, S A Faheem, R R Willis. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. Journal of the American Chemical Society, 2009, 131( 43): 15834– 15842
https://doi.org/10.1021/ja9061344
38 Y K Hwang, D Y Hong, J S Chang, S H Jhung, Y K Seo, J Kim, A Vimont, M Daturi, C Serre, G Ferey. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 2008, 47( 22): 4144– 4148
https://doi.org/10.1002/anie.200705998
39 T Loiseau, L Lecroq, C Volkringer, J Marrot, G Férey, M Haouas, F Taulelle, S Bourrelly, P Llewellyn, M Latroche. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ 3-oxo-centered trinuclear units. Journal of the American Chemical Society, 2006, 128( 31): 10223– 10230
https://doi.org/10.1021/ja0621086
40 L Y Yuan, Y L Liu, W Q Shi, Y L Lv, J H Lan, Y L Zhao, Z F Chai. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Transactions (Cambridge, England), 2011, 40( 28): 7446– 7453
https://doi.org/10.1039/c1dt10085h
41 Y S Ho, G McKay. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 2000, 334( 3): 735– 742
https://doi.org/10.1016/S0043-1354(99)00232-8
42 K Y Foo, B H Hameed. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 2010, 156( 1): 2– 10
https://doi.org/10.1016/j.cej.2009.09.013
43 I Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918, 40( 9): 1361– 1403
https://doi.org/10.1021/ja02242a004
44 J Lützenkirchen. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation. Journal of Colloid and Interface Science, 1997, 15( 1): 149– 155
https://doi.org/10.1006/jcis.1997.5160
45 W Jia, Y Fang, G M Zeng. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere, 2018, 201 : 627– 643
https://doi.org/10.1016/j.chemosphere.2018.03.047
46 J W Jun, M Tong, B K Jung, Z Hasan, C Zhong, S H Jhung. Effect of central metal ions of analogous metal–organic frameworks on adsorption of organoarsenic compounds from water: plausible mechanism of adsorption and water purification. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21( 1): 347– 354
https://doi.org/10.1002/chem.201404658
47 A C M Lamb, F Grieser, T W Healy. The adsorption of uranium(VI) onto colloidal TiO2, SiO2 and carbon black. Colloids and Surfaces A, 2016, 499 : 156– 162
https://doi.org/10.1016/j.colsurfa.2016.04.003
48 Y D Zou, X X Wang, F Wu, S J Yu, Y Z Hu, W C Song, Y H Liu, H Q Wang, T Hayat, X K Wang. Controllable synthesis of Ca–Mg–Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustainable Chemistry & Engineering, 2016, 5( 1): 1173– 1185
https://doi.org/10.1021/acssuschemeng.6b02550
49 A Herbst, A Khutia, C Janiak. Bronsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorganic Chemistry, 2014, 53( 14): 7319– 7333
https://doi.org/10.1021/ic5006456
[1] FCE-22015-OF-BX_suppl_1 Download
[1] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[2] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[3] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed