Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (12) : 1782-1792    https://doi.org/10.1007/s11705-022-2220-9
RESEARCH ARTICLE
Room-temperature hydrogenation of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles
Yuemin Lin1, Yuanyuan Zhang1, Renfeng Nie2(), Kai Zhou1, Yao Ma1, Mingjie Liu1, Dan Lu1, Zongbi Bao1,3, Qiwei Yang1,3, Yiwen Yang1,3, Qilong Ren1,3, Zhiguo Zhang1,3()
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Chemical Engineering, Henan Center for Outstanding Overseas Scientists, Zhengzhou University, Zhengzhou 450001, China
3. Institute of Zhejiang University—Quzhou, Quzhou 324000, China
 Download: PDF(5790 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ultra-dispersed Ni nanoparticles (7.5 nm) on nitrogen-doped carbon nanoneedles (Ni@NCNs) were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines. Two different crystallization methods (stirring and static) were compared and the optimal pyrolysis temperature was explored. Ni@NCNs were systematically characterized by wide analytical techniques. In the hydrogenation of p-chloronitrobenzene, Ni@NCNs-600 (pyrolyzed at 600 °C) exhibited extraordinarily high performance with 77.9 h–1 catalytic productivity and > 99% p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions (90 °C, 1.5 MPa H2), showing obvious superiority compared with reported Ni-based catalysts. Notably, the reaction smoothly proceeded at room temperature with full conversion and > 99% selectivity. Moreover, Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups (halogen, nitrile, keto, carboxylic, etc.), and could be easily recycled by magnetic separation and reused for 5 times without deactivation. The adsorption tests showed that the preferential adsorption of –NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene, thus achieving high p-chloroaniline selectivity. While the high activity can be attributed to high Ni dispersion, special morphology, and rich pore structure of the catalyst.

Keywords halogenated nitrobenzenes      room-temperature hydrogenation      Ni nanoparticles      nitrogen-doped carbon nanoneedles      metal–organic-framework     
Corresponding Author(s): Renfeng Nie,Zhiguo Zhang   
Online First Date: 03 November 2022    Issue Date: 19 December 2022
 Cite this article:   
Yuemin Lin,Yuanyuan Zhang,Renfeng Nie, et al. Room-temperature hydrogenation of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1782-1792.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2220-9
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I12/1782
Fig.1  (a) Illustration for preparation of Ni@NCNs-T; (b) PXRD patterns of Ni-MOFs by different preparation methods.
Fig.2  SEM images of Ni-MOFs prepared by (a, b) stirring-crystallization and (c, d) static-crystallization.
Fig.3  (a) PXRD patterns, (b) Raman spectra, (c) N 1s and (d) Ni 2p XPS spectra of Ni@NCNs.
Fig.4  (a, b, c) SEM images of Ni@NCNs-600 at different nanoscales; (d, e) TEM images; (f) high resolution TEM image and SEAD patterns; (g) elemental mapping images of Ni@NCNs-600; (h, i) TEM images of Ni@NCNs-600-static. The insets in (e) and (i) show the size distributions of Ni nanoparticles.
Fig.5  (a) Proposed reaction routes for the hydrogenation of p-chloronitrobenzene. (b) Catalytic results of different catalysts for the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. catalyst, 2 mL ethanol, 80 °C, 2.0 MPa H2, 60 min. * 787 mg p-chloronitrobenzene, 10 mg Ni@NCNs-600 catalyst, ethanol/H2O (8/2, 10 mL), 90 °C, 1.5 MPa H2, 60 min). (c) Saturated adsorption capacity of different substrates with Ni@NCNs-600. (d) Activity comparison of reported Ni-based catalysts for p-chloronitrobenzene hydrogenation to p-chloroaniline, the catalytic productivity is defined as the mole of converted p-chloronitrobenzene per mole of Ni per hour.
Fig.6  (a) Effect of water on the hydrogenation of p-chloronitrobenzene (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. Ni@NCNs-600 catalyst, 2 mL solvent, 80 °C, 2.0 MPa H2, 30 min). (b) Effect of reaction temperature on the hydrogenation of p-chloronitrobenzene (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. Ni@NCNs-600 catalyst, 2 mL solvent (ethanol/H2O = 8/2), 2.0 MPa H2, 20 min). (c) Effect of hydrogen pressure on the hydrogenation of p-chloronitrobenzene (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. Ni@NCNs-600 catalyst, 2 mL solvent (ethanol/H2O = 8/2), 90 °C, 20 min). (d) Effect of hydrogen pressure on the room-temperature hydrogenation of p-chloronitrobenzene (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. Ni@NCNs-600 catalyst, 1.5 mL solvent (ethanol/H2O = 8/2), room temperature, 20 h).
Fig.7  (a) Recycling test of Ni@NCNs-600 in the hydrogenation of p-chloronitrobenzene (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. Ni@NCNs-600 catalyst, 2 mL solvent (ethanol/H2O = 8/2), 90 °C, 1.5 MPa H2, 20 min). (b) PXRD patterns of fresh and spent Ni@NCNs-600 catalysts. (c) The filtration experiment of Ni@NCNs-600 (reaction conditions: 53 mg p-chloronitrobenzene, 2.8 wt % equiv. Ni@NCNs-600 catalyst, 2 mL solvent (ethanol/H2O = 8/2), 80 °C, 2 MPa H2).
Entry Substrate Product Time/min Conv./% Sele./%
1 20 100 > 99
2 40 100 98
3 20 100 > 99
4 20 100 97
5 30 100 95
6 40 94 97
7b) 80 100 93
8 30 100 > 99
9 30 100 > 99
10 40 92 95
Tab.1  Selective hydrogenation of various sensitive-group-substituted nitroarenes a)
1 D Formenti, F Ferretti, F K Scharnagl, M Beller. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chemical Reviews, 2019, 119(4): 2611–2680
https://doi.org/10.1021/acs.chemrev.8b00547
2 M M Trandafir, F Neatu, I M Chirica, S Neatu, A C Kuncser, E I Cucolea, V Natu, M W Barsoum, M Florea. Highly efficient ultralow Pd loading supported on MAX phases for chemoselective hydrogenation. ACS Catalysis, 2020, 10(10): 5899–5908
https://doi.org/10.1021/acscatal.0c00082
3 J Song, Z Huang, L Pan, K Li, X Zhang, L Wang, J Zou. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Applied Catalysis B: Environmental, 2018, 227: 386–408
https://doi.org/10.1016/j.apcatb.2018.01.052
4 H Wei, X Liu, A Wang, L Zhang, B Qiao, X Yang, Y Huang, S Miao, J Liu, T Zhang. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634
https://doi.org/10.1038/ncomms6634
5 F A Westerhaus, R V Jagadeesh, G Wienhofer, M M Pohl, J Radnik, A E Surkus, J Rabeah, K Junge, H Junge, M Nielsen, A Brückner, M Beller. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5(6): 537–543
https://doi.org/10.1038/nchem.1645
6 R V Jagadeesh, A E Surkus, H Junge, M M Pohl, J Radnik, J Rabeah, H Huan, V Schunemann, A Bruckner, M Beller. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science, 2013, 342(6162): 1073–1076
https://doi.org/10.1126/science.1242005
7 M Sankar, N Dimitratos, P J Miedziak, P P Wells, C J Kiely, G J Hutchings. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 2012, 41(24): 8099–8139
https://doi.org/10.1039/c2cs35296f
8 C Gao, F Lyu, Y Yin. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237
9 P Munnik, P E de Jongh, K P de Jong. Recent developments in the synthesis of supported catalysts. Chemical Reviews, 2015, 115(14): 6687–6718
https://doi.org/10.1021/cr500486u
10 X Yang, W Liu, F Tan, Z Zhang, X Chen, T Liang, C Wu. A robust strategy of homogeneously hybridizing silica and Cu3(BTC)2 to in situ synthesize highly dispersed copper catalyst for furfural hydrogenation. Applied Catalysis A: General, 2020, 596: 117518
https://doi.org/10.1016/j.apcata.2020.117518
11 J Li, B Wang, Y Qin, Q Tao, L Chen. MOF-derived Ni@NC catalyst: synthesis, characterization, and application in one-pot hydrogenation and reductive amination. Catalysis Science & Technology, 2019, 9(14): 3726–3734
https://doi.org/10.1039/C9CY00734B
12 D Su, S Perathoner, G Centi. Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013, 113(8): 5782–5816
https://doi.org/10.1021/cr300367d
13 J Wang, H Kong, J Zhang, Y Hao, Z Shao, F Ciucci. Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116: 100717
https://doi.org/10.1016/j.pmatsci.2020.100717
14 Z Shi, W Yang, Y Gu, T Liao, Z Sun. Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Advanced Science, 2020, 7(15): 2001069
https://doi.org/10.1002/advs.202001069
15 Q Zhang, D Zhang, Y Zhou, J Qian, X Wen, P Jiang, L Ma, C Lu, F Feng, X Li. Preparation of heteroatom-doped carbon materials and applications in selective hydrogenation. ChemistrySelect, 2022, 7(4): e202102581
https://doi.org/10.1002/slct.202102581
16 J Yang, W Li, D Wang, Y Li. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300
https://doi.org/10.1002/adma.202003300
17 K Shen, X Chen, J Chen, Y Li. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catalysis, 2016, 6(9): 5887–5903
https://doi.org/10.1021/acscatal.6b01222
18 Q Wang, D Astruc. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 2020, 120(2): 1438–1511
https://doi.org/10.1021/acs.chemrev.9b00223
19 J Wang, Y Wang, H Hu, Q Yang, J Cai. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives. Nanoscale, 2020, 12(7): 4238–4268
https://doi.org/10.1039/C9NR09697C
20 Y He, Z Wang, H Wang, Z Wang, G Zeng, P Xu, D Huang, M Chen, B Song, H Qin, Y Zhao. Metal–organic framework-derived nanomaterials in environment related fields: fundamentals, properties and applications. Coordination Chemistry Reviews, 2021, 429: 213618
https://doi.org/10.1016/j.ccr.2020.213618
21 W Hu, M Zheng, B Xu, Y Wei, W Zhu, Q Li, H Pang. Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(7): 3880–3917
https://doi.org/10.1039/D0TA10666F
22 K S Lakhi, D H Park, K Al-Bahily, W Cha, B Viswanathan, J H Choy, A Vinu. Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chemical Society Reviews, 2017, 46(1): 72–101
https://doi.org/10.1039/C6CS00532B
23 C Wang, J Kim, J Tang, M Kim, H Lim, V Malgras, J You, Q Xu, J Li, Y Yamauchi. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40
https://doi.org/10.1016/j.chempr.2019.09.005
24 N Cheng, L Ren, X Xu, Y Du, S X Dou. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Advanced Energy Materials, 2018, 8(25): 1801257
https://doi.org/10.1002/aenm.201801257
25 X Song, Y Jiang, F Cheng, J Earnshaw, J Na, X Li, Y Yamauchi. Hollow carbon-based nanoarchitectures based on ZIF: inward/outward contraction mechanism and beyond. Small, 2021, 17(2): 2004142
https://doi.org/10.1002/smll.202004142
26 J Han, X Meng, L Lu, J Bian, Z Li, C Sun. Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc-air batteries. Advanced Functional Materials, 2019, 29(41): 1808872
https://doi.org/10.1002/adfm.201808872
27 Y Fan, C Zhuang, S Li, Y Wang, X Zou, X Liu, W Huang, G Zhu. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(2): 1110–1118
https://doi.org/10.1039/D0TA10838C
28 L Huang, Y Lv, S Wu, P Liu, W Xiong, F Hao, H Luo. Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions. Applied Catalysis A: General, 2019, 577: 76–85
https://doi.org/10.1016/j.apcata.2019.03.017
29 J Wang, G Fan, F Li. A hybrid nanocomposite precursor route to synthesize dispersion-enhanced Ni catalysts for the selective hydrogenation of o-chloronitrobenzene. Catalysis Science & Technology, 2013, 3(4): 982–991
https://doi.org/10.1039/c2cy20597a
30 P Zhang, Z Zhao, B Dyatkin, C Liu, J Qiu. In situ synthesis of cotton-derived Ni/C catalysts with controllable structures and enhanced catalytic performance. Green Chemistry, 2016, 18(12): 3594–3599
https://doi.org/10.1039/C5GC01604E
31 H Pan, Y Peng, X Lu, J He, L He, C Wang, F Yue, H Zhang, D Zhou, Q Xia. Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Molecular Catalysis, 2020, 485: 110838
https://doi.org/10.1016/j.mcat.2020.110838
32 G Li, H Yang, H Zhang, Z Qi, M Chen, W Hu, L Tian, R Nie, W Huang. Encapsulation of nonprecious metal into ordered mesoporous N-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catalysis, 2018, 8(9): 8396–8405
https://doi.org/10.1021/acscatal.8b01404
33 Z Luo, R Nie, V T Nguyen, A Biswas, R K Behera, X Wu, T Kobayashi, A Sadow, B Wang, W Huang, L Qi. Transition metal-like carbocatalyst. Nature Communications, 2020, 11(1): 4091
https://doi.org/10.1038/s41467-020-17909-8
34 Y Tao, Y Nie, H Hu, K Wang, Y Chen, R Nie, J Wang, T Lu, Y Zhang, C C Xu. Highly active Ni nanoparticles on N-doped mesoporous carbon with tunable selectivity for the one-pot transfer hydroalkylation of nitroarenes with EtOH in the absence of H2. ChemCatChem, 2021, 13(19): 4243–4250
https://doi.org/10.1002/cctc.202100925
35 K Murugesan, A S Alshammari, M Sohail, M Beller, R V Jagadeesh. Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2019, 370: 372–377
https://doi.org/10.1016/j.jcat.2018.12.018
36 K Murugesan, M Beller, R V Jagadeesh. Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angewandte Chemie International Edition, 2019, 58(15): 5064–5068
https://doi.org/10.1002/anie.201812100
37 F Yang, M Wang, W Liu, B Yang, Y Wang, J Luo, Y Tang, L Hou, Y Li, Z Li, B Zhang, W Yang, Y Li. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chemistry, 2019, 21(3): 704–711
https://doi.org/10.1039/C8GC03664K
38 S Li, X Chen, J Wang, N Yao, J Wang, J Cen, X Li. Construction the Ni@carbon nanostructure with dual-reaction surfaces for the selective hydrogenation reaction. Applied Surface Science, 2019, 489: 786–795
https://doi.org/10.1016/j.apsusc.2019.05.366
39 F Li, R Ma, B Cao, J Liang, H Song, H Song. Effect of loading method on selective hydrogenation of chloronitrobenzenes over amorphous Ni-B/CNTs catalysts. Catalysis Communications, 2016, 80: 1–4
https://doi.org/10.1016/j.catcom.2016.03.009
40 W She, T Qi, M Cui, P Yan, S W Ng, W Li, G Li. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Applied Materials & Interfaces, 2018, 10(17): 14698–14707
https://doi.org/10.1021/acsami.8b01187
41 Y Kang, H Du, B Jiang, H Li, Y Guo, M A Amin, Y Sugahara, T Asahi, H Li, Y Yamauchi. Microwave one-pot synthesis of CNT-supported amorphous Ni−P alloy nanoparticles with enhanced hydrogenation performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(12): 6560–6568
https://doi.org/10.1039/D1TA10742A
42 B Tang, W Song, E Yang, X Zhao. MOF-derived Ni-based nanocomposites as robust catalysts for chemoselective hydrogenation of functionalized nitro compounds. RSC Advances, 2017, 7(3): 1531–1539
https://doi.org/10.1039/C6RA26699A
43 L Huang, Y Lv, S Liu, H Cui, Z Zhao, H Zhao, P Liu, W Xiong, F Hao, H Luo. Non-noble metal Ni nanoparticles supported on highly dispersed TiO2-modified activated carbon as an efficient and recyclable catalyst for the hydrogenation of halogenated aromatic nitro compounds under mild conditions. Industrial & Engineering Chemistry Research, 2020, 59(4): 1422–1435
https://doi.org/10.1021/acs.iecr.9b04397
44 G Hahn, J K Ewert, C Denner, D Tilgner, R Kempe. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. ChemCatChem, 2016, 8(15): 2461–2465
https://doi.org/10.1002/cctc.201600391
45 L Huang, F Tang, F Hao, H Zhao, W Liu, Y Lv, P Liu, W Xiong, H Luo. Tuning the electron density of metal nickel via interfacial electron transfer in Ni/MCM-41 for efficient and selective catalytic hydrogenation of halogenated nitroarenes. ACS Sustainable Chemistry & Engineering, 2022, 10(9): 2947–2959
https://doi.org/10.1021/acssuschemeng.1c07836
46 H Wang, Y Wang, Y Li, X Lan, B Ali, T Wang. Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent. ACS Applied Materials & Interfaces, 2020, 12(30): 34021–34031
https://doi.org/10.1021/acsami.0c06632
47 M Li, S Chen, Q Jiang, Q Chen, X Wang, Y Yan, J Liu, C Lv, W Ding, X Guo. Origin of the activity of Co–N–C catalysts for chemoselective hydrogenation of nitroarenes. ACS Catalysis, 2021, 11(5): 3026–3039
https://doi.org/10.1021/acscatal.0c05479
48 G Li, B Wang, D E Resasco. Water-mediated heterogeneously catalyzed 48. reactions. ACS Catalysis, 2019, 10(2): 1294–1309
https://doi.org/10.1021/acscatal.9b04637
[1] FCE-22048-OF-LY_suppl_1 Download
[1] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed