Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (7) : 1114-1124    https://doi.org/10.1007/s11705-021-2087-1
RESEARCH ARTICLE
Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction
Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng(), Zhenxia Chen, Yun Ling, Yaming Zhou
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
 Download: PDF(2383 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a porous Ni-doped carbon matrix were produced by the pyrolysis of zirconium metal–organic–frameworks, in which 2,2′-bipyridine-5,5′-dicarboxylate operating as a ligand can coordinate with Ni2+ and Fe3+. This strategy allows formation of Fe-modulated Ni nanoparticles with a uniform dimension of about 2 nm which can be ascribed to the spatial blocking effect of ZrO2. This unique catalyst displays an efficient oxygen evolution reaction electrocatalytic activity with a low overpotential of 372 mV at 10 mA·cm–2 and a small Tafel slope of 84.4 mV·dec–1 in alkaline media. More importantly, it shows superior durability and structural stability after 43 h in a chronoamperometry test. Meanwhile, it shows excellent cycling stability during 4000 cyclic voltammetry cycles. This research offers a new insight into the construction of uniform nanoscale transition metals and their alloys as highly efficient and durable electrocatalysts.

Keywords metal–organic framework      pyrolysis      ultrafine      Fe-modulated Ni nanoparticles      oxygen evolution reaction     
Corresponding Author(s): Mingli Deng   
Online First Date: 29 September 2021    Issue Date: 15 July 2022
 Cite this article:   
Lingtao Kong,Zhouxun Li,Hui Zhang, et al. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2087-1
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I7/1114
  Scheme 1 Schematic illustration of the synthetic strategy for the Fe-modulated Ni NPs.
Fig.1  (a) PXRD patterns of the produced samples; (b) IR spectra of (1) UiO-bpydc, (2) NiUiO-bpydc, (3) Ni1Fe1UiO-bpydc and (4) FeUiO-bpydc; (c) TGA profile of Ni1Fe1UiO-bpydc under nitrogen; (d) PXRD patterns of (1) Ni1Fe1UiO-bpydc-500, (2) Ni1Fe1UiO-bpydc-600 and (3) Ni1Fe1UiO-bpydc-700 (Green: PDF#87-0712, Metallic Ni; Purple: PDF#50-1089, ZrO2).
Fig.2  HRTEM images of (a) Ni1Fe1UiO-bpydc-500, (b) Ni1Fe1UiO-bpydc-600, (c) Ni1Fe1UiO-bpydc-700, (d) HAADF images for Ni1Fe1UiO-bpydc-500, (e) Ni1Fe1UiO-bpydc-600 and (f) Ni1Fe1UiO-bpydc-700, and the corresponding EDX mapping images of N, Zr, Ni and Fe elements.
Fig.3  XPS spectra of Ni1Fe1UiO-bpydc-500(1), Ni1Fe1UiO-bpydc-600(2) and Ni1Fe1UiO-bpydc-700(3). (a) Full spectra; (b) high-resolution C 1s XPS spectra; (c) high-resolution N 1s XPS spectra; (d) high-resolution Ni 2p XPS spectra; (e) high-resolution Fe 2p XPS spectra; (f) high-resolution Zr 3d XPS spectra.
Sample Ni mass percent/% Fe mass percent/% Atomic ratio of (Fe/Ni)/%
Ni1Fe1UiO-bpydc-500 11.45 0.204 1.9
Ni1Fe1UiO-bpydc-600 9.132 0.276 3.2
Ni1Fe1UiO-bpydc-700 9.258 0.329 3.7
Ni1Fe1UiO-67-600 0.030 0.010 35.1
NiUiO-bpydc-600 20.06
FeUiO-bpydc-600 0.331
Ni3Fe1UiO-bpydc-600 15.01 0.112 0.8
Ni1Fe3UiO-bpydc-600 2.583 0.269 10.9
Tab.1  Elemental composition results of samples by ICP-AES analysis.
Fig.4  (a) Raman spectra of Ni1Fe1UiO-bpydc-500, Ni1Fe1UiO-bpydc-600 and Ni1Fe1UiO-bpydc-700; (b) N2 adsorption-desorption isotherms of the as-made samples.
Sample Specific surface/(m2·g–1) Total pore volume/(cm3·g–1) Pore sizea)/nm
UiO-bpydc 1949 1.05 2.2
NiUiO-bpydc 1181 1.11 3.7
Ni1Fe1UiO-bpydc-500 84 0.41 19.4
Ni1Fe1UiO-bpydc-600 202 0.38 7.6
Ni1Fe1UiO-bpydc-700 422 0.48 4.6
Tab.2  Texture parameters of these as-made samples
Fig.5  Electrochemical OER activity of as-made samples in 1 mol·L–1 KOH solution: (a) polarization curves; (b) the corresponding Tafel plots derived from the polarization curves; (c) the relationship between scan rate and the current density; (d) Nyquist plots of the corresponding samples, the inset shows the equivalent circuit employed to fit the experimental data; (e) chronopotentiometric test curves of IrO2 and Ni1Fe1UiO-bpydc-600 measured at 10 mA·cm–2; (f) linear sweep voltammetry (LSV) curves of Ni1Fe1UiO-bpydc-600 before and after 4000 cyclic voltammetry (CV) cycles with the scan rate of 20 mV·s–1.
Fig.6  Electrochemical OER activities of the corresponding samples in 1 mol·L–1 KOH solution: (a) polarization curves; (b) the overpotential and Tafel slope derived from the polarization curves.
1 P E Brockway, A Owen, L I Brand-Correa, L Hardt. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nature Energy, 2019, 4(7): 612–621
https://doi.org/10.1038/s41560-019-0425-z
2 G Glenk, S Reichelstein. Economics of converting renewable power to hydrogen. Nature Energy, 2019, 4(3): 216–222
https://doi.org/10.1038/s41560-019-0326-1
3 J Zhang, L Yu, Y Chen, X F Lu, S Gao, X W Lou. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Advanced Materials, 2020, 32(16): 1906432
https://doi.org/10.1002/adma.201906432
4 Q Zhang, J Guan. Single-atom catalysts for electrocatalytic applications. Advanced Functional Materials, 2020, 30(31): 2000768
https://doi.org/10.1002/adfm.202000768
5 Y Wang, J Zhang. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12(4): 838–854
https://doi.org/10.1007/s11705-018-1746-3
6 X Z Song, N Zhang, X F Wang, Z Tan. Recent advances of metal-organic frameworks and their composites toward oxygen evolution electrocatalysis. Materials Today. Energy, 2021, 19: 100597
https://doi.org/10.1016/j.mtener.2020.100597
7 P W Menezes, S Yao, R Beltrán-Suito, J N Hausmann, P V Menezes, M Driess. Facile access to an active γ-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic Nickel germanide precursor. Angewandte Chemie International Edition, 2021, 60(9): 4640–4647
https://doi.org/10.1002/anie.202014331
8 Z P Wu, X F Lu, S Q Zang, X W Lou. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Advanced Functional Materials, 2020, 30(15): 1910274
https://doi.org/10.1002/adfm.201910274
9 H Yang, X Han, A I Douka, L Huang, L Gong, C Xia, H S Park, B Y Xia. Advanced oxygen electrocatalysis in energy conversion and storage. Advanced Functional Materials, 2021, 31(12): 2007602
https://doi.org/10.1002/adfm.202007602
10 L Han, S Dong, E Wang. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291
https://doi.org/10.1002/adma.201602270
11 H Sun, Z Yan, F Liu, W Xu, F Cheng, J Chen. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Advanced Materials, 2020, 32(3): 1806326
https://doi.org/10.1002/adma.201806326
12 X Peng, C Pi, X Zhang, S Li, K Huo, P K Chu. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy & Fuels, 2019, 3(2): 366–381
https://doi.org/10.1039/C8SE00525G
13 F Song, L Bai, A Moysiadou, S Lee, C Hu, L Liardet, X Hu. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. Journal of the American Chemical Society, 2018, 140(25): 7748–7759
https://doi.org/10.1021/jacs.8b04546
14 Y Xu, W Tu, B Zhang, S Yin, Y Huang, M Kraft, R Xu. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2017, 29(11): 1605957
https://doi.org/10.1002/adma.201605957
15 G L Li, B B Yang, X C Xu, S Cao, Y Shi, Y Yan, X Song, C Hao. FeNi alloy nanoparticles encapsulated in carbon shells supported on N-doped graphene-like carbon as efficient and stable bifunctional oxygen electrocatalysts. Chemistry (Weinheim an der Bergstrasse, Germany), 2020, 26(13): 2890–2896
https://doi.org/10.1002/chem.201904685
16 Z Tao, T Wang, X Wang, J Zheng, X Li. MOF-derived noble metal free catalysts for electrochemical water splitting. ACS Applied Materials & Interfaces, 2016, 8(51): 35390–35397
https://doi.org/10.1021/acsami.6b13411
17 X Cui, P Ren, D Deng, J Deng, X Bao. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy & Environmental Science, 2016, 9(1): 123–129
https://doi.org/10.1039/C5EE03316K
18 H Wu, J Wang, G Wang, F Cai, Y Ye, Q Jiang, S Sun, S Miao, X Bao. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy, 2016, 30: 801–809
https://doi.org/10.1016/j.nanoen.2016.09.016
19 S A Shah, Z Ji, X Shen, X Yue, G Zhu, K Xu, A Yuan, N Ullah, J Zhu, P Song, X Li. Thermal synthesis of FeNi@nitrogen-doped graphene dispersed on nitrogen-doped carbon matrix as an excellent electrocatalyst for oxygen evolution reaction. ACS Applied Energy Materials, 2019, 2(6): 4075–4083
https://doi.org/10.1021/acsaem.9b00199
20 W Chen, J Pei, C T He, J Wan, H Ren, Y Wang, J Dong, K Wu, W C Cheong, J Mao, et al.. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Advanced Materials, 2018, 30(30): 1800396
https://doi.org/10.1002/adma.201800396
21 H Fei, J Dong, Y Feng, C S Allen, C Wan, B Volosskiy, M Li, Z Zhao, Y Wang, H Sun, et al.. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1(1): 63–72
https://doi.org/10.1038/s41929-017-0008-y
22 P Yin, T Yao, Y Wu, L Zheng, Y Lin, W Liu, H Ju, J Zhu, X Hong, Z Deng, et al.. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angewandte Chemie International Edition, 2016, 55(36): 10800–10805
https://doi.org/10.1002/anie.201604802
23 B Liu, H Shioyama, T Akita, Q Xu. Metal-organic framework as a template for porous carbon synthesis. Journal of the American Chemical Society, 2008, 130(16): 5390–5391
https://doi.org/10.1021/ja7106146
24 L Feng, K Y Wang, J Willman, H C Zhou. Hierarchy in metal-organic frameworks. ACS Central Science, 2020, 6(3): 359–367
https://doi.org/10.1021/acscentsci.0c00158
25 H B Wu, X W Lou. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Science Advances, 2017, 3(12): eaap9252
https://doi.org/10.1126/sciadv.aap9252
26 H F Wang, L Chen, H Pang, S Kaskel, Q Xu. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49(5): 1414–1448
https://doi.org/10.1039/C9CS00906J
27 C Wang, J Kim, J Tang, M Kim, H Lim, V Malgras, J You, Q Xu, J Li, Y Yamauchi. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40
https://doi.org/10.1016/j.chempr.2019.09.005
28 Q Wang, D Astruc. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 2020, 120(2): 1438–1511
https://doi.org/10.1021/acs.chemrev.9b00223
29 L Han, J Xu, X Zhu, F Yang, X Jia. High-performance Ni-V-Fe metal-organic framework electrocatalyst composed of integrated nanowires and nanosheets for oxygen evolution reaction. Materials Today. Energy, 2020, 16: 100419
https://doi.org/10.1016/j.mtener.2020.100419
30 D Liang, H Zhang, X Ma, S Liu, J Mao, H Fang, J Yu, Z Guo, T Huang. MOFs-derived core-shell Co3Fe7@Fe2N nanopaticles supported on rGO as high-performance bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Materials Today. Energy, 2020, 17: 100433
https://doi.org/10.1016/j.mtener.2020.100433
31 H Meng, Y Liu, H Liu, S Pei, X Yuan, H Li, Y Zhang. ZIF67@MFC-derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions. ACS Applied Materials & Interfaces, 2020, 12(37): 41580–41589
https://doi.org/10.1021/acsami.0c12069
32 J Zhao, X Quan, S Chen, Y Liu, H Yu. Cobalt nanoparticles encapsulated in porous carbons derived from core-shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(34): 28685–28694
https://doi.org/10.1021/acsami.7b10138
33 K Nakatsuka, T Yoshii, Y Kuwahara, K Mori, H Yamashita. Controlled pyrolysis of Ni-MOF-74 as a promising precursor for the creation of highly active Ni nanocatalysts in size-selective hydrogenation. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(4): 898–905
https://doi.org/10.1002/chem.201704341
34 L Ning, S Liao, H Li, R Tong, C Dong, M Zhang, W Gu, X Liu. Carbon-based materials with tunable morphology confined Ni(0) and Ni-Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57
https://doi.org/10.1016/j.carbon.2019.07.099
35 H Fei, S M Cohen. A robust, catalytic metal-organic framework with open 2,2′-bipyridine sites. Chemical Communications, 2014, 50(37): 4810–4812
https://doi.org/10.1039/C4CC01607F
36 E D Bloch, D Britt, C Lee, C J Doonan, F J Uribe-Romo, H Furukawa, J R Long, O M Yaghi. Metal insertion in a microporous metal-organic framework lined with 2,2-bipyridine. Journal of the American Chemical Society, 2010, 132(41): 14382–14384
https://doi.org/10.1021/ja106935d
37 M I Gonzalez, A B Turkiewicz, L E Darago, J Oktawiec, K Bustillo, F Grandjean, G J Long, J R Long. Confinement of atomically defined metal halide sheets in a metal-organic framework. Nature, 2020, 577(7788): 64–68
https://doi.org/10.1038/s41586-019-1776-0
38 A Schaate, P Roy, A Godt, J Lippke, F Waltz, M Wiebcke, P Behrens. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(24): 6643–6651
https://doi.org/10.1002/chem.201003211
39 R Thür, N Van Velthoven, S Slootmaekers, J Didden, R Verbeke, S Smolders, M Dickmann, W Egger, D De Vos, I F J Vankelecom. Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. Journal of Membrane Science, 2019, 576: 78–87
https://doi.org/10.1016/j.memsci.2019.01.016
40 H Zaid, A Aleman, K Tanaka, C Li, P Berger, T Back, J Fankhauser, M S Goorsky, S Kodambaka. Influence of ultra-low ethylene partial pressure on microstructural and compositional evolution of sputter-deposited Zr–C thin films. Surface and Coatings Technology, 2020, 398: 126053
https://doi.org/10.1016/j.surfcoat.2020.126053
41 A Escudeiro, N M Figueiredo, T Polcar, A Cavaleiro. Structural and mechanical properties of nanocrystalline Zr co-sputtered a-C(:H) amorphous films. Applied Surface Science, 2015, 325: 64–72
https://doi.org/10.1016/j.apsusc.2014.11.015
42 J W Zhang, H Zhang, T Z Ren, Z Y Yuan, T J Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287
https://doi.org/10.1007/s11705-020-1965-2
43 M Wu, B Guo, A Nie, R Liu. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2020, 561: 585–592
https://doi.org/10.1016/j.jcis.2019.11.033
44 C Wang, H Yang, Y Zhang, Q Wang. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angewandte Chemie International Edition, 2019, 58(18): 6099–6103
https://doi.org/10.1002/anie.201902446
45 Z Gao, L Wang, J Chang, C Chen, D Wu, F Xu, K Jiang. CoNi alloy incorporated, N doped porous carbon as efficient counter electrode for dye-sensitized solar cell. Journal of Power Sources, 2017, 348: 158–167
https://doi.org/10.1016/j.jpowsour.2017.03.009
46 X Zhang, Y Chen, B Wang, M Chen, B Yu, X Wang, W Zhang, D Yang. FeNi nanoparticles embedded porous nitrogen-doped nanocarbon as efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2019, 321: 134720
https://doi.org/10.1016/j.electacta.2019.134720
47 J V Alemán, A V Chadwick, J He, M Hess, K Horie, R G Jones, P Kratochvíl, I Meisel, I Mita, G Moad, et al.. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry, 2007, 79(10): 1801–1829
https://doi.org/10.1351/pac200779101801
48 X Wang, J Feng, Y Bai, Q Zhang, Y Yin. Synthesis, properties, and applications of hollow micro-/nanostructures. Chemical Reviews, 2016, 116(18): 10983–11060
https://doi.org/10.1021/acs.chemrev.5b00731
49 S Dou, X Wang, S Wang. Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods, 2019, 3(1): 1800211
https://doi.org/10.1002/smtd.201800211
50 S Mendioroz, J A Pajares, I Benito, C Pesquera, F Gonzalez, C Blanco. Texture evolution of montmorillonite under progressive acid treatment: change from H3 to H2 type of hysteresis. Langmuir, 1987, 3(5): 676–681
https://doi.org/10.1021/la00077a017
51 S A Shah, G Zhu, X Shen, L Kong, Z Ji, K Xu, H Zhou, J Zhu, P Song, C Song, et al.. Controllable sandwiching of reduced graphene oxide in hierarchical defect-rich MoS2 ultrathin nanosheets with expanded interlayer spacing for electrocatalytic hydrogen evolution reaction. Advanced Materials Interfaces, 2018, 5(23): 1801093
https://doi.org/10.1002/admi.201801093
52 Q Zhang, J Guan. Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471: 228446
https://doi.org/10.1016/j.jpowsour.2020.228446
53 Q Zhang, J Guan. Single-atom catalysts for electrocatalytic applications. Advanced Functional Materials, 2020, 30(31): 2000768
https://doi.org/10.1002/adfm.202000768
54 L Bai, Z Duan, X Wen, J Guan. Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378: 353–362
https://doi.org/10.1016/j.jcat.2019.09.009
[1] FCE-21021-OF-KL_suppl_1 Download
[1] Hongtao Xie, Qin Geng, Xiaoyue Liu, Jian Mao. Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Front. Chem. Sci. Eng., 2022, 16(3): 376-383.
[2] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[3] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[4] Ji Liu, Xinrui Fan, Wei Zhao, Shi-guan Yang, Wenluan Xie, Bin Hu, Qiang Lu. A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1217-1228.
[5] Wei Wang, Haijun Lv, Juan Du, Aibing Chen. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1312-1321.
[6] Xiangchun Liu, Jun Hu, Ruilun Xie, Bin Fang, Ping Cui. Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale[J]. Front. Chem. Sci. Eng., 2021, 15(2): 363-372.
[7] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[8] Simona Colantonio, Lorenzo Cafiero, Doina De Angelis, Nicolò M. Ippolito, Riccardo Tuffi, Stefano Vecchio Ciprioti. Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue[J]. Front. Chem. Sci. Eng., 2020, 14(2): 288-303.
[9] Ying Yan, Peng Huang, Huiping Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(4): 772-783.
[10] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[11] Vojtěch Turek, Bohuslav Kilkovský, Zdeněk Jegla, Petr Stehlík. Proposed EU legislation to force changes in sewage sludge disposal: A case study[J]. Front. Chem. Sci. Eng., 2018, 12(4): 660-669.
[12] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[13] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[14] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
[15] Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs[J]. Front. Chem. Sci. Eng., 2018, 12(1): 50-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed