Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (4) : 483-489    https://doi.org/10.1007/s11705-022-2227-2
VIEWS & COMMENTS
Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy
Lan Lin, Lai Jiang, En Ren(), Gang Liu()
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
 Download: PDF(2300 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Benefiting from the advantage of taking place in biological environments without interfering with an innate biochemical process, the bioorthogonal reaction that commonly contains the “bond formation” and “bond cleavage” system has been widely used in targeted therapy for a variety of tumors. Herein, several prominent cases based on the bioorthogonal reaction that tailoring the metabolic glycoengineering tactics to modified cells for cancer immunotherapy, and the innovative tactics for reducing the metal ions’ toxic and side effects with microneedle patches will be highlighted. Based on these applications, the complexities, potential pitfalls, and opportunities of bioorthogonal chemistry in future cancer therapy will be evaluated.

Keywords bioorthogonal reaction      cancer therapy      metabolic glycoengineering      bioorthogonal catalytic patch     
Corresponding Author(s): En Ren,Gang Liu   
Online First Date: 30 December 2022    Issue Date: 24 March 2023
 Cite this article:   
Lan Lin,Lai Jiang,En Ren, et al. Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy[J]. Front. Chem. Sci. Eng., 2023, 17(4): 483-489.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2227-2
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I4/483
  Scheme1 The classic paradigm of bioorthogonal chemistry-based on-demand drug delivery system in cancer therapy. (a) Metabolic glycoengineering-based “bond formation” system. When the sugar precursor N-azidoacetylmannosamine-tetraacylated was explicitly delivered to the cancer lesions, the azide motifs can be incorporated onto the cellular membrane via the metabolic glycoengineering procedure. Subsequently, the DBCO-modified molecules (e.g., proteins, nucleotides, fluorescent probes, and various drug carriers) can specifically bind to the displaying azide motifs. (b) The abiotic transition metals based “bond cleavage” system. The metals (e.g., Pd, Au, Ru, Cu) can be anchored in the tumor environment via various delivery devices (e.g., hydrogels, metal?organic frameworks, microneedle patches, and mesoporous silica nanoparticles). Benefiting from their catalytic performance, the pharmacological properties of the caged anticancer drug can be activated and recovered in the tumor site in a spatiotemporally controlled manner.
Fig.1  Schematic illustration of metabolic glycoengineering-based DCs labeling for cancer therapy in vivo. (a) Benefiting from the GM-CSF and azide-sugar materials encapsulation, the alginate gels can recruit the DCs, resulting in azide-labeled glycoproteins on membranes with the assisted of ultrasound. (b) The azide-labeled DCs from the gel scaffold can migrate to the lymph node and subsequent targeting of immunomodulatory agents (e.g., antigen, adjuvant, cytokine) via bioorthogonal reaction. Reprinted with permission from Ref. [38], copyright 2021, Springer Nature.
Fig.2  Diagram of the preparation and application of the bioorthogonal catalytic patch. (a, b, c) Characterization of the bioorthogonal catalytic patch: (a) Photograph, (b, c) Scanning electron microscopy image and longitudinal section of one microneedle; (d) schematic illustration of in situ bioorthogonal catalysis mediated by microneedle patch for locally activating systematically administrated prodrugs in vivo. Reprinted with permission from Ref. [39], copyright 2021, Springer Nature.
1 L Li, J Wang, H Kong, Y Zeng, G Liu. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Science and Technology of Advanced Materials, 2018, 19(1): 771–790
https://doi.org/10.1080/14686996.2018.1528850
2 Y Lu, A A Aimetti, R Langer, Z Gu. Bioresponsive materials. Nature Reviews Materials, 2017, 2(1): 16075
https://doi.org/10.1038/natrevmats.2016.75
3 D Hanahan, R A Weinberg. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
4 T X Z Liang, Z W Chen, H J Li, Z Gu. Bioorthogonal catalysis for biomedical applications. Trends in Chemistry, 2022, 4(2): 157–168
https://doi.org/10.1016/j.trechm.2021.11.008
5 L Taiariol, C Chaix, C Farre, E Moreau. Click and bioorthogonal chemistry: the future of active targeting of nanoparticles for nanomedicines?. Chemical Reviews, 2022, 122(1): 340–384
https://doi.org/10.1021/acs.chemrev.1c00484
6 R Bird, S Lemmel, X Yu, Q Zhou. Bioorthogonal chemistry and its applications. Bioconjugate Chemistry, 2021, 32(12): 2457–2479
https://doi.org/10.1021/acs.bioconjchem.1c00461
7 K Kostenkova, G Scalese, D Gambino, D C Crans. Highlighting the roles of transition metals and speciation in chemical biology. Current Opinion in Chemical Biology, 2022, 69: 102155
https://doi.org/10.1016/j.cbpa.2022.102155
8 J Gurruchaga-Pereda, V Martínez-Martínez, E Rezabal, X Lopez, C Garino, F Mancin, A L Cortajarena, L Salassa. Flavin bioorthogonal photocatalysis toward platinum substrates. ACS Catalysis, 2020, 10(1): 187–196
https://doi.org/10.1021/acscatal.9b02863
9 T Deb, J Tu, R M Franzini. Mechanisms and substituent effects of metal-free bioorthogonal reactions. Chemical Reviews, 2021, 121(12): 6850–6914
https://doi.org/10.1021/acs.chemrev.0c01013
10 M T Taylor, M L Blackman, O Dmitrenko, J M Fox. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. Journal of the American Chemical Society, 2011, 133(25): 9646–9649
https://doi.org/10.1021/ja201844c
11 C Bednarek, I Wehl, N Jung, U Schepers, S Bräse. The staudinger ligation. Chemical Reviews, 2020, 120(10): 4301–4354
https://doi.org/10.1021/acs.chemrev.9b00665
12 J Li, P R Chen. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 2016, 12(3): 129–137
https://doi.org/10.1038/nchembio.2024
13 H Wang, D J Mooney. Metabolic glycan labelling for cancer-targeted therapy. Nature Chemistry, 2020, 12(12): 1102–1114
https://doi.org/10.1038/s41557-020-00587-w
14 P Thirumurugan, D Matosiuk, K Jozwiak. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 2013, 113(7): 4905–4979
https://doi.org/10.1021/cr200409f
15 E Ren, C Liu, P Lv, J Wang, G Liu. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics. Advanced Science, 2021, 8(21): 2100460
https://doi.org/10.1002/advs.202100460
16 D Soriano del Amo, W Wang, H Jiang, C Besanceney, A C Yan, M Levy, Y Liu, F L Marlow, P Wu. Biocompatible copper(I) catalysts for in vivo imaging of glycans. Journal of the American Chemical Society, 2010, 132(47): 16893–16899
https://doi.org/10.1021/ja106553e
17 E M Sletten, C R Bertozzi. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of Chemical Research, 2011, 44(9): 666–676
https://doi.org/10.1021/ar200148z
18 T Völker, E Meggers. Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Current Opinion in Chemical Biology, 2015, 25: 48–54
https://doi.org/10.1016/j.cbpa.2014.12.021
19 R Rakhit, R Navarro, T J Wandless. Chemical biology strategies for posttranslational control of protein function. Chemistry & Biology, 2014, 21(9): 1238–1252
https://doi.org/10.1016/j.chembiol.2014.08.011
20 R M Yusop, A Unciti-Broceta, E M V Johansson, R M Sánchez-Martín, M Bradley. Palladium-mediated intracellular chemistry. Nature Chemistry, 2011, 3(3): 239–243
https://doi.org/10.1038/nchem.981
21 J Li, J T Yu, J Y Zhao, J Wang, S Q Zheng, S X Lin, L Chen, M Y Yang, S Jia, X Y Zhang, P R Chen. Palladium-triggered deprotection chemistry for protein activation in living cells. Nature Chemistry, 2014, 6(4): 352–361
https://doi.org/10.1038/nchem.1887
22 J T Weiss, J C Dawson, K G Macleod, W Rybski, C Fraser, C Torres-Sánchez, E E Patton, M Bradley, N O Carragher, A Unciti-Broceta. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nature Communications, 2014, 5(1): 3277
https://doi.org/10.1038/ncomms4277
23 W Yang, H X Nan, Z F Xu, Z X Huang, S Chen, J Y Li, J Li, H H Yang. DNA-templated glycan labeling for monitoring receptor spatial distribution in living cells. Analytical Chemistry, 2021, 93(36): 12265–12272
https://doi.org/10.1021/acs.analchem.1c01815
24 Q Y Hu, W J Sun, J Q Wang, H T Ruan, X D Zhang, Y Q Ye, S Shen, C Wang, W Y Lu, K Cheng, G Dotti, J F Zeidner, J Wang, Z Gu. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2(11): 831–840
https://doi.org/10.1038/s41551-018-0310-2
25 J B Pawlak, G P P Gential, T J Ruckwardt, J S Bremmers, N J Meeuwenoord, F A Ossendorp, H S Overkleeft, D V Filippov, S I van Kasteren. Bioorthogonal deprotection on the dendritic cell surface for chemical control of antigen cross-presentation. Angewandte Chemie International Edition, 2015, 54(19): 5628–5631
https://doi.org/10.1002/anie.201500301
26 D Wu, K K Yang, Z K Zhang, Y X Feng, L Rao, X Y Chen, G C Yu. Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022, 51(4): 1336–1376
https://doi.org/10.1039/D1CS00451D
27 T Völker, F Dempwolff, P L Graumann, E Meggers. Progress towards bioorthogonal catalysis with organometallic compounds. Angewandte Chemie International Edition, 2014, 53(39): 10536–10540
https://doi.org/10.1002/anie.201404547
28 R K Lim, Q Lin. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Accounts of Chemical Research, 2011, 44(9): 828–839
https://doi.org/10.1021/ar200021p
29 P V Chang, J A Prescher, E M Sletten, J M Baskin, I A Miller, N J Agard, A Lo, C R Bertozzi. Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 1821–1826
https://doi.org/10.1073/pnas.0911116107
30 S T Laughlin, C R Bertozzi. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nature Protocols, 2007, 2(11): 2930–2944
https://doi.org/10.1038/nprot.2007.422
31 W J Li, H Pan, H M He, X Q Meng, Q Ren, P Gong, X Jiang, Z G Liang, L L Liu, M B Zheng, X Shao, Y Ma, L Cai. Bio-orthogonal T cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small, 2019, 15(4): e1804383
https://doi.org/10.1002/smll.201804383
32 J A Prescher, C R Bertozzi. Chemical technologies for probing glycans. Cell, 2006, 126(5): 851–854
https://doi.org/10.1016/j.cell.2006.08.017
33 E Ren, C C Chu, Y M Zhang, J Q Wang, X Pang, X N Lin, C Liu, X X Shi, Q X Dai, P Lv, X Wang, X Chen, G Liu. Mimovirus vesicle-based biological orthogonal reaction for cancer diagnosis. Small Methods, 2020, 4(9): 2000291
https://doi.org/10.1002/smtd.202000291
34 H Wang, R B Wang, K M Cai, H He, Y Liu, J Yen, Z Y Wang, M Xu, Y W Sun, X Zhou, Q Yin, L Tang, I T Dobrucki, L W Dobrucki, E J Chaney, S A Boppart, T M Fan, S Lezmi, X Chen, L Yin, J Cheng. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13(4): 415–424
https://doi.org/10.1038/nchembio.2297
35 M K Shim, H Y Yoon, J H Ryu, H Koo, S Lee, J H Park, J H Kim, S Lee, M G Pomper, I C Kwon, K Kim. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angewandte Chemie International Edition, 2016, 55(47): 14698–14703
https://doi.org/10.1002/anie.201608504
36 R Xie, L Dong, R B Huang, S L Hong, R X Lei, X Chen. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angewandte Chemie International Edition, 2014, 53(51): 14082–14086
https://doi.org/10.1002/anie.201408442
37 H Wang, M Gauthier, J R Kelly, R J Miller, M Xu, W D Jr O’Brien, J J Cheng. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angewandte Chemie International Edition, 2016, 55(18): 5452–5456
https://doi.org/10.1002/anie.201509601
38 H Wang, M C Sobral, D K Y Zhang, A N Cartwright, A W Li, M O Dellacherie, C M Tringides, S T Koshy, K W Wucherpfennig, D J Mooney. Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19(11): 1244–1252
https://doi.org/10.1038/s41563-020-0680-1
39 Z W Chen, H J Li, Y J Bian, Z J Wang, G J Chen, X D Zhang, Y M Miao, D Wen, J Q Wang, G Wan, Y Zeng, P Abdou, J Fang, S Li, C J Sun, Z Gu. Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16(8): 933–941
https://doi.org/10.1038/s41565-021-00910-7
40 J C Yu, J Q Wang, Y Q Zhang, G J Chen, W W Mao, Y Q Ye, A R Kahkoska, J B Buse, R Langer, Z Gu. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4(5): 499–506
https://doi.org/10.1038/s41551-019-0508-y
41 C Q Wang, H Zhang, T Zhang, X Y Zou, H Wang, J E Rosenberger, R Vannam, W S Trout, J B Grimm, L D Lavis, C Thorpe, X Jia, Z Li, J M Fox. Enabling in vivo photocatalytic activation of rapid bioorthogonal chemistry by repurposing silicon-rhodamine fluorophores as cytocompatible far-red photocatalysts. Journal of the American Chemical Society, 2021, 143(28): 10793–10803
https://doi.org/10.1021/jacs.1c05547
[1] Xuewen Mu, Yun Xu, Zheng Wang, Dunyun Shi. Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review[J]. Front. Chem. Sci. Eng., 2023, 17(2): 123-138.
[2] Mengying Liu, Yun Xu, Yanjun Zhao, Zheng Wang, Dunyun Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions[J]. Front. Chem. Sci. Eng., 2022, 16(3): 345-363.
[3] Wei Wang, Bhavitavya Nijampatnam, Sadanandan E. Velu, Ruiwen Zhang. Discovery and development of synthetic tricyclic pyrroloquinone (TPQ) alkaloid analogs for human cancer therapy[J]. Front. Chem. Sci. Eng., 2016, 10(1): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed