Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (11) : 1677-1697    https://doi.org/10.1007/s11705-023-2300-5
REVIEW ARTICLE
Pt–C interactions in carbon-supported Pt-based electrocatalysts
Yu-Xuan Xiao1, Jie Ying1(), Hong-Wei Liu1, Xiao-Yu Yang2()
1. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(9322 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt–C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.

Keywords Pt–C interactions      Pt-based materials      carbon support      electrocatalysis     
Corresponding Author(s): Jie Ying,Xiao-Yu Yang   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Online First Date: 25 April 2023    Issue Date: 25 October 2023
 Cite this article:   
Yu-Xuan Xiao,Jie Ying,Hong-Wei Liu, et al. Pt–C interactions in carbon-supported Pt-based electrocatalysts[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1677-1697.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2300-5
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I11/1677
Fig.1  Diagram outlining the different Pt–C interactions brought about by different carbon supports.
Carbon materialSynthetic methodPore typeMean pore sizeRef.
Zeolite-templated carbonHard templateMicropore1.2 nm[42]
3D graphene-like microporous carbonHard templateMicropore1.33 or 1.21 nm[43]
Microporous 3D graphene-like carbonHard templateMicropore< 1.3 nm (74%)1.3–2.2 nm (8%)[44]
Disordered amorphous microporous carbonHard templateMicropore1.1–3.0 nm[45]
Microporous carbon nanospheresSoft templateMicropore0.4–2 nm[46]
Hierarchically porous amorphous carbonDirect pyrolysisMicropore0.4–1.08 nm[47]
Disordered amorphous ultramicroporous carbonDirect pyrolysisMicropore0.6–0.76 nm[48]
Amorphous microporous carbonHydrothermal/direct pyrolysisMicropore0.7–3 nm[49]
Mesoporous carbon hollow spheresHard templateMesopore13.9 nm[50]
Ordered mesoporous carbons (OMCs)Hard templateMesopore3.0–5.0 nm[51]
Porous carbonsSoft templateMesopore5.1 nm[52]
OMCsSoft templateMesopore4.5 nm[53]
OMCs spheresSoft templateMesopore5 nm[54]
Mesoporous carbon nanospheresSoft templateMesopore5–37 nm[55]
Mesoporous carbonDirect pyrolysisMesopore11 nm[56]
Porous carbon microspheresHydrothermalMesopore18.4–26.1 nm[57]
3D ordered macroporous carbon nanocompositeHard templateMesopore/macropore1–100 nm[58]
Ordered macroporous carbonHard templateMacropore~255 nm[59]
3D ultrathin macroporous carbonHard templateMacropore~300 nm[60]
Macroporous carbon rodsSoft templateMacropore~100 nm[61]
3D hierarchical bimodal macroporous carbon nanospheresSoft templateMacropore~120 nm[62]
Cornstalk-derived macroporous carbonDirect pyrolysisMacropore5.0–20.0 μm[63]
Macroporous carbonDirect pyrolysisMacropore250 nm[64]
Eggplant-derived macroporous carbon tubesDirect pyrolysisMacropore40–50 μm[65]
Well-ordered macroporous carbonDirect pyrolysisMacropore4–40?μm[66]
Tab.1  A summary of the pore size of carbon materials synthesized by different methods
Fig.2  Pt-based nanoparticles supported in OMC with (a) hierarchically hollow straight mesopores in thick wall, (b) hierarchically hollow straight mesopores in thin wall, (c) interacted mesopores, and (d) straight mesopores. Reprinted with permission from Ref. [72], copyright 2020, Wiley-VCH, Ref. [73], copyright 2021, Wiley-VCH, Ref. [74], copyright 2014, Elsevier, and Ref. [75], copyright 2016, Royal Society of Chemistry.
Fig.3  Pt-based nanoparticles supported in/on MOFs-derived porous carbon. (a) Hollow PtCo and Pt single atoms encapsulated in MOFs-derived carbon shells. Reprinted with permission from Ref. [78], copyright 2018, American Chemical Society. (b) Pt nanoparticles supported on MOFs-derived porous carbon. Reprinted with permission from Ref. [79], copyright 2018, American Chemical Society. (c) Pt nanoparticles embedded in MOFs-derived hierarchically hollow porous carbon. Reprinted with permission from Ref. [80], copyright 2017, Elsevier. (d) PtCo and Co nanoparticles embedded in MOFs-derived hierarchically hollow porous carbon. Reprinted with permission from Ref. [81], copyright 2018, Elsevier.
Fig.4  Pt-based nanoparticles supported on 3D porous carbon of (a) CNT arrays, (b) CNT aerogels, (c) 3D carbon foam, and (d) OMC films. Reprinted with permission from Ref. [83], copyright 2011, Wiley-VCH, Ref. [84], copyright 2016, American Chemical Society, Ref. [85], copyright 2020, Elsevier, and Ref. [86], copyright 2021, Royal Society of Chemistry.
Fig.5  (a) Illustration of the pathway for direct N doping of a carbon support derived from MOFs. (b–d) Morphology characterization of the samples. (e) Illustration of the defects and vacancies. Reprinted with permission from Ref. [78], copyright 2018, American Chemical Society.
Fig.6  (a) Morphology characterization, (b) S dopant characterization and (c) the electron structure characterization of Pt/SG. Reprinted with permission from Ref. [106], copyright 2014, Wiley-VCH.
Fig.7  Pt-based nanoparticles supported on (a) 0D/0D, (b) 0D/1D, (c) 0D/2D, and (d) 1D/2D carbon/carbon binary supports. Reprinted with permission from Ref. [122], copyright 2022, American Chemical Society, Ref. [123], copyright 2017, American Chemical Society, Ref. [127], copyright 2020, Elsevier, and Ref. [128], copyright 2018, American Chemical Society.
Fig.8  Pt-based nanoparticles supported on (a) carbon/SiO2, (b) carbon/TiO2, (c) carbon/NiOx, and (d) carbon/TaOx binary supports. Reprinted with permission from Ref. [134], copyright 2021, Elsevier, Ref. [136], copyright 2022, American Chemical Society, Ref. [137], copyright 2017, Elsevier, and Ref. [139], copyright 2017, American Chemical Society.
Fig.9  Pt-based nanoparticles supported on (a) carbon/polyaniline, (b) carbon/5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate), (c) carbon/polyindole, and (d) carbon/ZIF-8 binary supports. Reprinted with permission from Ref. [141], copyright 2011, American Chemical Society, Ref. [143], copyright 2014, Royal Society of Chemistry, Ref. [144], copyright 2015, Elsevier, and Ref. [145], copyright 2019, American Chemical Society.
Fig.10  (a) ORR polarization curves and (b) corresponding specific activities of PtPd/CNF, PtPd/a-CNF, PtPd/CNF-EG, PtPd/ACNF, and commercial Pt/C. Reprinted with permission from Ref. [147], copyright 2019, Elsevier. (c) HER polarization curves of Pt1/NMHCS, PtNP/MHCS, NMHCS, Pt wire and 20 wt % Pt/C. (d) Corresponding mass activities and overpotential of Pt1/NMHCS, PtNP/MHCS and 20 wt % Pt/C. Reprinted with permission from Ref. [111], copyright 2019, Wiley-VCH. (e) FAOR cyclic voltammetry curves and (f) corresponding mass activities of Pt-Au/C and Pt/C. Reprinted with permission from Ref. [113], copyright 2018, Elsevier.
1 K L Zhou, Z Wang, C B Han, X Ke, C Wang, Y Jin, Q Zhang, J Liu, H Wang, H Yan. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12(1): 3783
https://doi.org/10.1038/s41467-021-24079-8
2 M Li, Z Zhao, W Zhang, M Luo, L Tao, Y Sun, Z Xia, Y Chao, K Yin, Q H Zhang, L Gu, W Yang, Y Yu, G Lu, S Guo. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Advanced Materials, 2021, 33(41): 2103762
https://doi.org/10.1002/adma.202103762
3 S M Wu, J Čejka, X Y Yang. Active sites in the right places. Nature Synthesis, 2022, 1(10): 757–758
https://doi.org/10.1038/s44160-022-00168-4
4 F Y Yu, Z L Lang, L Y Yin, K Feng, Y J Xia, H Q Tan, H T Zhu, J Zhong, Z H Kang, Y G Li. Pt–O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nature Communications, 2020, 11(1): 490
https://doi.org/10.1038/s41467-019-14274-z
5 X Tian, X Zhao, Y Q Su, L Wang, H Wang, D Dang, B Chi, H Liu, E J Hensen, X W Lou, B Y Xia. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366(6467): 850–856
https://doi.org/10.1126/science.aaw7493
6 J Ying, S Lenaerts, M D Symes, X Y Yang. Hierarchical design in nanoporous metals. Advanced Science, 2022, 9: 2106117
7 J Ying. Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Chemistry, 2021, 9: 753604
https://doi.org/10.3389/fchem.2021.753604
8 J Ying, G Jiang, Z P Cano, Z Ma, Z Chen. Spontaneous weaving: 3D porous Pt−Cu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 236: 359–367
https://doi.org/10.1016/j.apcatb.2018.04.035
9 Y X Xiao, J Ying, G Tian, X Q Zhang, C Janiak, K I Ozoemena, X Y Yang. Pt−Pd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chemical Communications, 2021, 57(8): 986–989
https://doi.org/10.1039/D0CC06876D
10 Y X Xiao, J Ying, G Tian, X Yang, Y X Zhang, J B Chen, Y Wang, M D Symes, K I Ozoemena, J Wu, X Y Yang. Hierarchically fractal Pt−Pd−Cu sponges and their directed mass-and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878
https://doi.org/10.1021/acs.nanolett.1c02268
11 Y Wang, H Z Yu, J Ying, G Tian, Y Liu, W Geng, J Hu, Y Lu, G G Chang, K I Ozoemena, C Janiak, X Y Yang. Ultimate corrosion to Pt–Cu electrocatalysts for enhancing methanol oxidation activity and stability in acidic media. Chemistry−A European Journal, 2021, 27(35): 9124–9128
https://doi.org/10.1002/chem.202100754
12 L Wang, L Zhang, W Ma, H Wan, X Zhang, X Zhang, S Jiang, J Y Zheng, Z Zhou. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-NixFe1−x(OH)2 to regulate the electronic structure for overall water splitting. Advanced Functional Materials, 2022, 32(31): 2203342
https://doi.org/10.1002/adfm.202203342
13 X Feng, Y Bai, M Liu, Y Li, H Yang, X Wang, C Wu. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy & Environmental Science, 2021, 14(4): 2036–2089
https://doi.org/10.1039/D1EE00166C
14 C Hu, L Dai. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angewandte Chemie International Edition, 2016, 55(39): 11736–11758
https://doi.org/10.1002/anie.201509982
15 L Yang, J Shui, L Du, Y Shao, J Liu, L Dai, Z Hu. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Advanced Materials, 2019, 31(13): 1804799
https://doi.org/10.1002/adma.201804799
16 L Zhang, S Jiang, W Ma, Z Zhou. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43(6): 1433–1443
https://doi.org/10.1016/S1872-2067(21)63961-X
17 Y Dong, J Ying, Y X Xiao, J B Chen, X Y Yang. Highly dispersed Pt nanoparticles embedded in N-doped porous carbon for efficient hydrogen evolution. Chemistry-an Asian Journal, 2021, 16(14): 1878–1881
https://doi.org/10.1002/asia.202100438
18 H Wei, Z Y Hu, Y X Xiao, G Tian, J Ying, G Van Tendeloo, C Janiak, X Y Yang, B L Su. Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction. Chemistry-an Asian Journal, 2018, 13(9): 1119–1123
https://doi.org/10.1002/asia.201800191
19 L Shen, J Ying, G Tian, M Jia, X Y Yang. Ultralong PtPd alloyed nanowires anchored on graphene for efficient methanol oxidation reaction. Chemistry-an Asian Journal, 2021, 16(9): 1130–1137
https://doi.org/10.1002/asia.202100156
20 B Hammer, J K Norskov. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240
https://doi.org/10.1038/376238a0
21 J Singh, R C Nelson, B C Vicente, S L Scott, J A van Bokhoven. Electronic structure of alumina-supported monometallic Pt and bimetallic Pt–Sn catalysts under hydrogen and carbon monoxide environment. Physical Chemistry Chemical Physics, 2010, 12(21): 5668–5677
https://doi.org/10.1039/c000403k
22 Y J Wang, N Zhao, B Fang, H Li, X T Bi, H Wang. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467
https://doi.org/10.1021/cr500519c
23 X Ren, Y Wang, A Liu, Z Zhang, Q Lv, B Liu. Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8(46): 24284–24306
https://doi.org/10.1039/D0TA08312G
24 X Q Zhang, Y X Xiao, G Tian, X Yang, Y Dong, F Zhang, X Y Yang. Enhancing resistance to chloride corrosion by controlling the morphologies of PtNi electrocatalysts for alkaline seawater hydrogen evolution. Chemistry–A European Journal, 2022, 29(5): e202202811
https://doi.org/10.1002/chem.202202811
25 Z Li, W Wang, Q Qian, Y Zhu, Y Feng, Y Zhang, H Zhang, M Cheng, G Zhang. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production. eScience, 2022, 2(4): 416–427
26 I C Gerber, P Serp. A theory/experience description of support effects in carbon-supported catalysts. Chemical Reviews, 2019, 120(2): 1250–1349
https://doi.org/10.1021/acs.chemrev.9b00209
27 J M Kim, Y J Lee, S Kim, K H Chae, K R Yoon, K A Lee, A Byeon, Y S Kang, H Y Park, M K Cho, H C Ham, J Y Kim. High-performance corrosion-resistant fluorine-doped tin oxide as an alternative to carbon support in electrodes for PEM fuel cells. Nano Energy, 2019, 65: 104008
https://doi.org/10.1016/j.nanoen.2019.104008
28 F Yang, X Bao, Y Zhao, X Wang, G Cheng, W Luo. Enhanced HOR catalytic activity of PGM-free catalysts in alkaline media: the electronic effect induced by different heteroatom doped carbon supports. Journal of Materials Chemistry A, 2019, 7(18): 10936–10941
https://doi.org/10.1039/C9TA01916B
29 W Geng, N Jiang, G Y Qing, X Liu, L Wang, H J Busscher, G Tian, T Sun, L Y Wang, Y Montelongo, C Janiak, G Zhang, X Y Yang, B L Su. Click reaction for reversible encapsulation of single yeast cells. ACS Nano, 2019, 13(12): 14459–14467
https://doi.org/10.1021/acsnano.9b08108
30 L Wang, Y Li, X Y Yang, B B Zhang, N Ninane, H J Busscher, Z Y Hu, C Delneuville, N Jiang, H Xie, G Van Tendeloo, T Hasan, B L Su. Single-cell yolk–shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8(4): nwaa097
https://doi.org/10.1093/nsr/nwaa097
31 H Doan, T Morais, N Borchtchoukova, Y Wijsboom, R Sharabi, M Chatenet, G Finkelshtain. Bimetallic Pt or Pd-based carbon supported nanoparticles are more stable than their monometallic counterparts for application in membraneless alkaline fuel cell anodes. Applied Catalysis B: Environmental, 2022, 301: 120811
https://doi.org/10.1016/j.apcatb.2021.120811
32 T Đukić, L J Moriau, L Pavko, M Kostelec, M Prokop, F Ruiz-Zepeda, M Šala, G Dražić, M Gatalo, N Hodnik. Understanding the crucial significance of the temperature and potential window on the stability of carbon supported Pt-alloy nanoparticles as oxygen reduction reaction electrocatalysts. ACS Catalysis, 2021, 12(1): 101–115
https://doi.org/10.1021/acscatal.1c04205
33 Y Yao, X Zhao, G Chang, X Yang, B Chen. Hierarchically porous metal–organic frameworks: synthetic strategies and applications. Small Structures, 2023, 4(1): 2200187
https://doi.org/10.1002/sstr.202200187
34 J F Huang, R H Zeng, J L Chen. Thermostable carbon-supported subnanometer-sized (< 1 nm) Pt clusters for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9(38): 21972–21980
https://doi.org/10.1039/D1TA06189E
35 Y Sun, X Li, J Wang, W Ning, J Fu, X Lu, Z Hou. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution. Applied Catalysis B: Environmental, 2017, 218: 538–544
https://doi.org/10.1016/j.apcatb.2017.06.086
36 L Shen, J Ying, K I Ozoemena, C Janiak, X Y Yang. Confinement effects in individual carbon encapsulated nonprecious metal-based electrocatalysts. Advanced Functional Materials, 2022, 32(15): 2110851
https://doi.org/10.1002/adfm.202110851
37 W Geng, L Wang, X Y Yang. Nanocell hybrids for green chemistry. Trends in Biotechnology, 2022, 40(8): 974–986
https://doi.org/10.1016/j.tibtech.2022.01.012
38 H Wang, Y Shao, S Mei, Y Lu, M Zhang, J K Sun, K Matyjaszewski, M Antonietti, J Yuan. Polymer-derived heteroatom-doped porous carbon materials. Chemical Reviews, 2020, 120(17): 9363–9419
https://doi.org/10.1021/acs.chemrev.0c00080
39 Z Zhou, T Liu, A U Khan, G Liu. Block copolymer-based porous carbon fibers. Science Advances, 2019, 5(2): eaau6852
https://doi.org/10.1126/sciadv.aau6852
40 G Yang, X Li, Z Guan, Y Tong, B Xu, X Wang, Z Wang, L Chen. Insights into lithium and sodium storage in porous carbon. Nano Letters, 2020, 20(5): 3836–3843
https://doi.org/10.1021/acs.nanolett.0c00943
41 J Yin, W Zhang, N A Alhebshi, N Salah, H N Alshareef. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853
https://doi.org/10.1002/smtd.201900853
42 N P Stadie, S Wang, K V Kravchyk, M V Kovalenko. Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 2017, 11(2): 1911–1919
https://doi.org/10.1021/acsnano.6b07995
43 P Sazama, J Pastvova, C Rizescu, A Tirsoaga, V I Parvulescu, H Garcia, L Kobera, J Seidel, J Rathousky, P Klein, I Jirka, J Moravkova, V Blechta. Catalytic properties of 3D graphene-like microporous carbons synthesized in a zeolite template. ACS Catalysis, 2018, 8(3): 1779–1789
https://doi.org/10.1021/acscatal.7b04086
44 K Kim, T Lee, Y Kwon, Y Seo, J Song, J K Park, H Lee, J Y Park, H Ihee, S J Cho, R Ryoo. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535(7610): 131–135
https://doi.org/10.1038/nature18284
45 Y Xia, R Mokaya, G S Walker, Y Zhu. Superior CO2 asorption cpacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 2011, 1(4): 678–683
https://doi.org/10.1002/aenm.201100061
46 S E Bae, K J Kim, I H Choi, S Huh. Preparation of N-doped microporous carbon nanospheres by direct carbonization of as-prepared mesoporous silica nanospheres containing cetylpyridinium bromide template. Carbon, 2016, 99: 8–16
https://doi.org/10.1016/j.carbon.2015.11.069
47 K Li, S Tian, J Jiang, J Wang, X Chen, F Yan. Pine cone shell-based activated carbon used for CO2 adsorption. Journal of Materials Chemistry A, 2016, 4(14): 5223–5234
https://doi.org/10.1039/C5TA09908K
48 J Zhou, Z Li, W Xing, H Shen, X Bi, T Zhu, Z Qiu, S Zhuo. A new approach to tuning carbon ultramicropore size at sub-angstrom level for maximizing specific capacitance and CO2 uptake. Advanced Functional Materials, 2016, 26(44): 7955–7964
https://doi.org/10.1002/adfm.201601904
49 L S Blankenship, N Balahmar, R Mokaya. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8(1): 1–12
https://doi.org/10.1038/s41467-017-01633-x
50 H Zhang, O Noonan, X Huang, Y Yang, C Xu, L Zhou, C Yu. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano, 2016, 10(4): 4579–4586
https://doi.org/10.1021/acsnano.6b00723
51 T N Phan, M K Gong, R Thangavel, Y S Lee, C H Ko. Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures. Journal of Alloys and Compounds, 2019, 780: 90–97
https://doi.org/10.1016/j.jallcom.2018.11.348
52 Y Zhou, S L Candelaria, Q Liu, E Uchaker, G Cao. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577
https://doi.org/10.1016/j.nanoen.2015.01.026
53 S Feng, W Li, J Wang, Y Song, A A Elzatahry, Y Xia, D Zhao. Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale, 2014, 6(24): 14657–14661
https://doi.org/10.1039/C4NR05629A
54 J G Wang, H Liu, H Sun, W Hua, H Wang, X Liu, B Wei. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92
https://doi.org/10.1016/j.carbon.2017.10.084
55 L Peng, C T Hung, S Wang, X Zhang, X Zhu, Z Zhao, C Wang, Y Tang, W Li, D Zhao. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. Journal of the American Chemical Society, 2019, 141(17): 7073–7080
https://doi.org/10.1021/jacs.9b02091
56 G A Ferrero, A B Fuertes, M Sevilla, M M Titirici. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106: 179–187
https://doi.org/10.1016/j.carbon.2016.04.080
57 Y Qian, S Jiang, Y Li, Z Yi, J Zhou, J Tian, N Lin, Y Qian. Understanding mesopore volume-enhanced extra-capacity: optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Materials, 2020, 29: 341–349
https://doi.org/10.1016/j.ensm.2020.04.026
58 X Hu, Y Liu, J Chen, J Jia, H Zhan, Z Wen. FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7(3): 1138–1148
https://doi.org/10.1039/C8TA10468A
59 X Li, L Fan, B Xu, Y Shang, M Li, L Zhang, S Liu, Z Kang, Z Liu, X Lu, D Sun. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Applied Materials & Interfaces, 2021, 13(45): 53892–53903
https://doi.org/10.1021/acsami.1c15661
60 Z Fang, D Fernandez, N Wang, Z Bai, G Yu. Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63(11): 1570–1577
https://doi.org/10.1007/s11426-020-9740-8
61 J Wang, Y Yao, C Zhang, Q Sun, D Cheng, X Huang, J Feng, J Wan, J Zou, C Liu, C Yu. Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Advanced Science, 2021, 8(18): 2100120
https://doi.org/10.1002/advs.202100120
62 R Balgis, W Widiyastuti, T Ogi, K Okuyama. Enhanced electrocatalytic activity of Pt/3D hierarchical bimodal macroporous carbon nanospheres. ACS Applied Materials & Interfaces, 2017, 9(28): 23792–23799
https://doi.org/10.1021/acsami.7b05873
63 J Li, N Zhang, H Zhao, Z Li, B Tian, Y Du. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. Journal of Materials Science Materials in Electronics, 2021, 32(21): 25758–25768
https://doi.org/10.1007/s10854-020-04571-5
64 T Meng, N Shang, J Zhao, M Su, C Wang, Y Zhang. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. Journal of Colloid and Interface Science, 2021, 589: 135–146
https://doi.org/10.1016/j.jcis.2020.12.119
65 Y Qu, G Zan, J Wang, Q Wu. Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co (OH)(CO3)0.5 nano-cone-arrays for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4(11): 4296–4304
https://doi.org/10.1039/C5TA09948J
66 S Dong, Z Yang, B Liu, J Zhang, P Xu, M Xiang, T Lu. (Pd, Au, Ag) nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications. Journal of Electroanalytical Chemistry, 2021, 897: 115562
https://doi.org/10.1016/j.jelechem.2021.115562
67 H Wang, D Yang, S Liu, S Yin, H Yu, Y Xu, X Li, Z Wang, L Wang. Cage-bell structured Pt@N-doped hollow carbon sphere for oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 409: 128101
https://doi.org/10.1016/j.cej.2020.128101
68 D Hu, W Fan, Z Liu, L Li. Three-dimensionally hierarchical Pt/C nanocomposite with ultra-high dispersion of Pt nanoparticles as a highly efficient catalyst for chemoselective cinnamaldehyde hydrogenation. ChemCatChem, 2018, 10(4): 779–788
https://doi.org/10.1002/cctc.201701301
69 A Eftekhari, Z Fan. Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers, 2017, 1(6): 1001–1027
https://doi.org/10.1039/C6QM00298F
70 S M Wu, M Beller, X Y Yang. A clear view of zeolite-catalyzed processes. Matter, 2022, 5(10): 3104–3107
https://doi.org/10.1016/j.matt.2022.09.006
71 X L Zhou, H Zhang, L M Shao, F Lü, P J He. Preparation and application of hierarchical porous carbon materials from waste and biomass: a review. Waste and Biomass Valorization, 2021, 12(4): 1699–1724
https://doi.org/10.1007/s12649-020-01109-y
72 X K Wan, H B Wu, B Y Guan, D Luan, X W Lou. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Advanced Materials, 2020, 32(7): 1901349
https://doi.org/10.1002/adma.201901349
73 P Kuang, Y Wang, B Zhu, F Xia, C W Tung, J Wu, H M Chen, J Yu. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Advanced Materials, 2021, 33(18): 2008599
https://doi.org/10.1002/adma.202008599
74 J Ying, X Y Yang, Z Y Hu, S C Mu, C Janiak, W Geng, M Pan, X Ke, G Van Tendeloo, B L Su. One particle@one cell: highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy, 2014, 8: 214–222
https://doi.org/10.1016/j.nanoen.2014.06.010
75 J Ying, Z Y Hu, X Y Yang, H Wei, Y X Xiao, C Janiak, S C Mu, G Tian, M Pan, G Van Tendeloo, B L Su. High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chemical Communications, 2016, 52(53): 8219–8222
https://doi.org/10.1039/C6CC00912C
76 F Yu, X Bai, M Liang, J Ma. Recent progress on metal–organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chemical Engineering Journal, 2021, 405: 126960
https://doi.org/10.1016/j.cej.2020.126960
77 B Liu, H Shioyama, T Akita, Q Xu. Metal–organic framework as a template for porous carbon synthesis. Journal of the American Chemical Society, 2008, 130(16): 5390–5391
https://doi.org/10.1021/ja7106146
78 L Zhang, J M T A Fischer, Y Jia, X Yan, W Xu, X Wang, J Chen, D Yang, H Liu, L Zhuang, M Hankel, D J Searles, K Huang, S Feng, C L Brown, X Yao. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. Journal of the American Chemical Society, 2018, 140(34): 10757–10763
https://doi.org/10.1021/jacs.8b04647
79 X Q Wu, J Zhao, Y P Wu, W W Dong, D S Li, J R Li, Q Zhang. Ultrafine Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-metal–organic framework for efficient methanol oxidation and nitrophenol reduction. ACS Applied Materials & Interfaces, 2018, 10(15): 12740–12749
https://doi.org/10.1021/acsami.8b01970
80 J Ying, G Jiang, Z P Cano, L Han, X Y Yang, Z Chen. Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40: 88–94
https://doi.org/10.1016/j.nanoen.2017.07.032
81 J Ying, J Li, G Jiang, Z P Cano, Z Ma, C Zhong, D Su, Z Chen. Metal–organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225: 496–503
https://doi.org/10.1016/j.apcatb.2017.11.077
82 H Liu, S Wu, N Tian, F Yan, C You, Y Yang. Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8(45): 23699–23723
https://doi.org/10.1039/D0TA08749A
83 W Zhang, A I Minett, M Gao, J Zhao, J M Razal, G G Wallace, T Romeo, J Chen. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Advanced Energy Materials, 2011, 1(4): 671–677
https://doi.org/10.1002/aenm.201100092
84 H Chen, T Liu, J Ren, H He, Y Cao, N Wang, Z Guo. Synergistic carbon nanotube aerogel-Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4(9): 3238–3244
https://doi.org/10.1039/C5TA10185A
85 J Ye, M Zhou, Y Le, B Cheng, J Yu. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2020, 267: 118689
https://doi.org/10.1016/j.apcatb.2020.118689
86 M Atwa, X Li, Z Wang, S Dull, S Xu, X Tong, R Tang, H Nishihara, F Prinz, V Birss. Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells. Materials Horizons, 2021, 8(9): 2451–2462
https://doi.org/10.1039/D1MH00268F
87 S Cherevko, N Kulyk, K J Mayrhofer. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275–298
https://doi.org/10.1016/j.nanoen.2016.03.005
88 L Perini, C Durante, M Favaro, V Perazzolo, S Agnoli, O Schneider, G Granozzi, A Gennaro. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2015, 7(2): 1170–1179
https://doi.org/10.1021/am506916y
89 Q Lai, J Zheng, Z Tang, D Bi, J Zhao, Y Liang. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angewandte Chemie International Edition, 2020, 59(29): 11999–12006
https://doi.org/10.1002/anie.202000936
90 X Ning, Y Li, J Ming, Q Wang, H Wang, Y Cao, F Peng, Y Yang, H Yu. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10(6): 1589–1596
https://doi.org/10.1039/C8SC04596H
91 J Li, X Y Yang. Membrane catalysts eliminate trace pollutants. Chem, 2022, 8(6): 1551–1553
https://doi.org/10.1016/j.chempr.2022.05.007
92 X Ning, H Yu, F Peng, H Wang. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. Journal of Catalysis, 2015, 325: 136–144
https://doi.org/10.1016/j.jcat.2015.02.010
93 Y X Xiao, J Ying, J B Chen, Y Dong, X Yang, G Tian, J Wu, C Janiak, K I Ozoemena, X Y Yang. Confined ultrafine Pt in porous carbon fibers and their N-enhanced heavy d–π effect. Chemistry of Materials, 2022, 34(8): 3705–3714
https://doi.org/10.1021/acs.chemmater.1c04400
94 D A Bulushev, M Zacharska, A S Lisitsyn, O Y Podyacheva, F S Hage, Q M Ramasse, U Bangert, L G Bulusheva. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catalysis, 2016, 6(6): 3442–3451
https://doi.org/10.1021/acscatal.6b00476
95 H Luo, Y Liu, S D Dimitrov, L Steier, S Guo, X Li, J Feng, F Xie, Y Fang, A Sapelkin, X Wang, M M Titirici. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8(29): 14690–14696
https://doi.org/10.1039/D0TA04431H
96 H Schmies, E Hornberger, B Anke, T Jurzinsky, H N Nong, F Dionigi, S Kühl, J Drnec, M Lerch, C Cremers, P Strasser. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts. Chemistry of Materials, 2018, 30(20): 7287–7295
https://doi.org/10.1021/acs.chemmater.8b03612
97 E Hornberger, T Merzdorf, H Schmies, J Hübner, M Klingenhof, U Gernert, M Kroschel, B Anke, M Lerch, J Schmidt, A Thomas, R Chattot, I Martens, J Drnec, P Strasser. Impact of carbon N-doping and pyridinic-N content on the fuel cell performance and durability of carbon-supported Pt nanoparticle catalysts. ACS Applied Materials & Interfaces, 2022, 14(16): 18420–18430
https://doi.org/10.1021/acsami.2c00762
98 J Duan, S Chen, M Jaroniec, S Z Qiao. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catalysis, 2015, 5(9): 5207–5234
https://doi.org/10.1021/acscatal.5b00991
99 S V Sawant, A W Patwardhan, J B Joshi, K Dasgupta. Boron doped carbon nanotubes: synthesis, characterization and emerging applications—a review. Chemical Engineering Journal, 2022, 427: 131616
https://doi.org/10.1016/j.cej.2021.131616
100 Y Kang, Y Tang, L Zhu, B Jiang, X Xu, O Guselnikova, H Li, T Asahi, Y Yamauchi. Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793
https://doi.org/10.1021/acscatal.2c03480
101 M Hu, Z Yao, L Li, Y H Tsou, L Kuang, X Xu, W Zhang, X Wang. Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H2-SCR. Nanoscale, 2018, 10(21): 10203–10212
https://doi.org/10.1039/C8NR01807C
102 R Yao, J Gu, H He, T Yu. Improved electrocatalytic activity and durability of Pt nanoparticles supported on boron-doped carbon black. Catalysts, 2020, 10(8): 862
https://doi.org/10.3390/catal10080862
103 S Samad, K S Loh, W Y Wong, T K Lee, J Sunarso, S T Chong, W R W Daud. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43(16): 7823–7854
https://doi.org/10.1016/j.ijhydene.2018.02.154
104 K Kwon, S A Jin, C Pak, H Chang, S H Joo, H I Lee, J H Kim, J M Kim. Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon. Catalysis Today, 2011, 164(1): 186–189
https://doi.org/10.1016/j.cattod.2010.10.030
105 Y Guo, T Park, J W Yi, J Henzie, J Kim, Z Wang, B Jiang, Y Bando, Y Sugahara, J Tang, Y Yamauchi. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Advanced Materials, 2019, 31(17): 1807134
https://doi.org/10.1002/adma.201807134
106 D Higgins, M A Hoque, M H Seo, R Wang, F Hassan, J Y Choi, M Y A Pritzker, J Zhang, Z Chen. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Advanced Functional Materials, 2014, 24(27): 4325–4336
https://doi.org/10.1002/adfm.201400161
107 M A Hoque, F M Hassan, D Higgins, J Y Choi, M Pritzker, S Knights, S Ye, Z Chen. Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. Advanced Materials, 2015, 27(7): 1229–1234
https://doi.org/10.1002/adma.201404426
108 M A Hoque, F M Hassan, M H Seo, J Y Choi, M Pritzker, S Knights, S Ye, Z Chen. Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19: 27–38
https://doi.org/10.1016/j.nanoen.2015.11.004
109 M A Hoque, F M Hassan, A M Jauhar, G Jiang, M Pritzker, J Y Choi, S Knights, S Ye, Z Chen. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 93–98
https://doi.org/10.1021/acssuschemeng.7b03580
110 C Xu, M A Hoque, G Chiu, T Sung, Z Chen. Stabilization of platinum-nickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6(113): 112226–112231
https://doi.org/10.1039/C6RA19924K
111 J J Fan, Y J Fan, R X Wang, S Xiang, H G Tang, S G Sun. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2017, 5(36): 19467–19475
https://doi.org/10.1039/C7TA05102F
112 W Kiciński, M Szala, M Bystrzejewski. Sulfur-doped porous carbons: synthesis and applications. Carbon, 2014, 68: 1–32
https://doi.org/10.1016/j.carbon.2013.11.004
113 Y Kang, Y Guo, J Zhao, B Jiang, J Guo, Y Tang, H Li, V Malgras, M A Amin, H Nara, Y Sugahara, Y Yamauchi, T Asahi. Soft template-based synthesis of mesoporous phosphorus-and boron-codoped NiFe-based alloys for efficient oxygen evolution reaction. Small, 2022, 18(31): 2203411
https://doi.org/10.1002/smll.202203411
114 Z Li, J Lin, B Li, C Yu, H Wang, Q Li. Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: a review. Journal of Energy Storage, 2021, 44: 103437
https://doi.org/10.1016/j.est.2021.103437
115 J Liang, Y Jiao, M Jaroniec, S Z Qiao. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angewandte Chemie International Edition, 2012, 51(46): 11496–11500
https://doi.org/10.1002/anie.201206720
116 D Y Shin, K W Sung, H J Ahn. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Applied Surface Science, 2019, 478: 499–504
https://doi.org/10.1016/j.apsusc.2019.01.186
117 Y Chang, F Hong, J Liu, M Xie, Q Zhang, C He, H Niu, J Liu. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction. Carbon, 2015, 87: 424–433
https://doi.org/10.1016/j.carbon.2015.02.063
118 J Zhu, G He, Z Tian, L Liang, P K Shen. Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2016, 194: 276–282
https://doi.org/10.1016/j.electacta.2016.01.222
119 R Paul, F Du, L Dai, Y Ding, Z L Wang, F Wei, A Roy. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Advanced Materials, 2019, 31(13): 1805598
https://doi.org/10.1002/adma.201805598
120 Z Yang, J Tian, Z Yin, C Cui, W Qian, F Wei. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon, 2019, 141: 467–480
https://doi.org/10.1016/j.carbon.2018.10.010
121 S S Fan, L Shen, Y Dong, G Tian, S M Wu, G G Chang, C Janiak, P Wei, J S Wu, X Y Yang. sp3-like defect structure of hetero graphene-carbon nanotubes for promoting carrier transfer and stability. Journal of Energy Chemistry, 2021, 57: 189–197
https://doi.org/10.1016/j.jechem.2020.09.020
122 S G Ji, H C Kwon, T H Kim, U Sim, C H Choi. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells?. ACS Catalysis, 2022, 12(12): 7317–7325
https://doi.org/10.1021/acscatal.2c01618
123 X Tong, J Zhang, G Zhang, Q Wei, R Chenitz, J P Claverie, S Sun. Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction. Chemistry of Materials, 2017, 29(21): 9579–9587
https://doi.org/10.1021/acs.chemmater.7b04221
124 M Karuppannan, Y Kim, S Gok, E Lee, J Y Hwang, J H Jang, Y H Cho, T Lim, Y E Sung, O J Kwon. A highly durable carbon-nanofiber-supported Pt–C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy & Environmental Science, 2019, 12(9): 2820–2829
https://doi.org/10.1039/C9EE01000A
125 H Xiao, S Xue, J Zhang, M Zhao, J Ma, S Chen, Z Zheng, J Jia, H Wu. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chemical Engineering Journal, 2021, 408: 127271
https://doi.org/10.1016/j.cej.2020.127271
126 Q Dang, Y Sun, X Wang, W Zhu, Y Chen, F Liao, H Huang, M Shao. Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Applied Catalysis B: Environmental, 2019, 257: 117905
https://doi.org/10.1016/j.apcatb.2019.117905
127 H Xiao, J Zhang, M Zhao, J Ma, Y Li, T Hu, Z Zheng, J Jia, H Wu. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. Journal of Power Sources, 2020, 451: 227770
https://doi.org/10.1016/j.jpowsour.2020.227770
128 M Yan, Q Jiang, T Zhang, J Wang, L Yang, Z Lu, H He, Y Fu, X Wang, H Huang. Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6(37): 18165–18172
https://doi.org/10.1039/C8TA05124K
129 Y Sun, M Li, X Qu, S Zheng, P J Alvarez, H Fu. Efficient reduction of selenite to elemental selenium by liquid-phase catalytic hydrogenation using a highly stable multiwalled carbon nanotube-supported Pt catalyst coated by N-doped carbon. ACS Applied Materials & Interfaces, 2021, 13(25): 29541–29550
https://doi.org/10.1021/acsami.1c05101
130 S Sharma, B G Pollet. Support materials for PEMFC and DMFC electrocatalysts—a review. Journal of Power Sources, 2012, 208: 96–119
https://doi.org/10.1016/j.jpowsour.2012.02.011
131 G Hu, Y Xiao, J Ying. Nano-SiO2 and silane coupling agent co-decorated graphene oxides with enhanced anti-corrosion performance of epoxy composite coatings. International Journal of Molecular Sciences, 2021, 22(20): 11087
https://doi.org/10.3390/ijms222011087
132 J Chen, J Ying, Y Xiao, Y Dong, K I Ozoemena, S Lenaerts, X Yang. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Science China Materials, 2022, 65(10): 1–9
https://doi.org/10.1007/s40843-021-1809-5
133 K Park, T Ohnishi, M Goto, M So, S Takenaka, Y Tsuge, G Inoue. Improvement of cell performance in catalyst layers with silica-coated Pt/carbon catalysts for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2020, 45(3): 1867–1877
https://doi.org/10.1016/j.ijhydene.2019.11.097
134 J Islam, S K Kim, K H Kim, E Lee, G G Park. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46(1): 1133–1143
https://doi.org/10.1016/j.ijhydene.2020.09.194
135 E C Barbosa, L S Parreira, I C de Freitas, L R Aveiro, D C de Oliveira, M C dos Santos, P H C Camargo. Pt-decorated TiO2 materials supported on carbon: increasing activities and stabilities toward the ORR by tuning the Pt loading. ACS Applied Energy Materials, 2019, 2(8): 5759–5768
https://doi.org/10.1021/acsaem.9b00879
136 W J Lee, S Bera, H Woo, H G Kim, J H Baek, W Hong, J Y Park, S J Oh, S H Kwon. In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition. Chemistry of Materials, 2022, 34(13): 5949–5959
https://doi.org/10.1021/acs.chemmater.2c00928
137 D C de Oliveira, W O Silva, M Chatenet, F H B Lima. NiOx-Pt/C nanocomposites: highly active electrocatalysts for the electrochemical oxidation of hydrazine. Applied Catalysis B: Environmental, 2017, 201: 22–28
https://doi.org/10.1016/j.apcatb.2016.08.007
138 B Gu, T Sun, Y Wang, Y Long, J Fu, G Fan. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorganic Chemistry Frontiers, 2022, 9(10): 2204–2212
https://doi.org/10.1039/D1QI01629F
139 Z Song, B Wang, N Cheng, L Yang, D Banham, R Li, S Ye, X Sun. Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs. Journal of Materials Chemistry A, 2017, 5(20): 9760–9767
https://doi.org/10.1039/C7TA01926B
140 Z Ma, S Li, L Wu, L Song, G Jiang, Z Liang, D Su, Y Zhu, R R Adzic, J X Wang, Z Chen. NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69: 104455
https://doi.org/10.1016/j.nanoen.2020.104455
141 D He, C Zeng, C Xu, N Cheng, H Li, S Mu, M Pan. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir, 2011, 27(9): 5582–5588
https://doi.org/10.1021/la2003589
142 L Wei, Y J Fan, J H Ma, L H Tao, R X Wang, J P Zhong, H Wang. Highly dispersed Pt nanoparticles supported on manganese oxide-poly(3,4-ethylenedioxythiophene)-carbon nanotubes composite for enhanced methanol electrooxidation. Journal of Power Sources, 2013, 238: 157–164
https://doi.org/10.1016/j.jpowsour.2013.03.051
143 R X Wang, J J Fan, Y J Fan, J P Zhong, L Wang, S G Sun, X C Shen. Platinum nanoparticles on porphyrin functionalized graphene nanosheets as a superior catalyst for methanol electrooxidation. Nanoscale, 2014, 6(24): 14999–15007
https://doi.org/10.1039/C4NR04140B
144 R X Wang, Y J Fan, L Wang, L N Wu, S N Sun, S G Sun. Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation. Journal of Power Sources, 2015, 287: 341–348
https://doi.org/10.1016/j.jpowsour.2015.03.181
145 C Eßbach, I Senkovska, T Unmüssig, A Fischer, S Kaskel. Selective alcohol electrooxidation by ZIF-8 functionalized Pt/carbon catalyst. ACS Applied Materials & Interfaces, 2019, 11(23): 20915–20922
https://doi.org/10.1021/acsami.9b06122
146 J Choi, Y J Lee, D Park, H Jeong, S Shin, H Yun, J Lim, J Han, E J Kim, S S Jeon, Y Jung, H Lee, B J Kim. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy & Environmental Science, 2020, 13(12): 4921–4929
https://doi.org/10.1039/D0EE01095B
147 Y X Xiao, J Ying, G Tian, Y Tao, H Wei, S Y Fan, Z H Sun, W J Zou, J Hu, G G Chang, W Li, X Y Yang, C Janiak. Highly dispersed PtPd on graphitic nanofibers and its heavy d–π effect. Applied Catalysis B: Environmental, 2019, 259: 118080
https://doi.org/10.1016/j.apcatb.2019.118080
148 Y Dong, J Li, X Y Yang. Cu catalysts detour hydrogen evolution reaction. Matter, 2022, 5(8): 2537–2540
https://doi.org/10.1016/j.matt.2022.06.057
149 G Bai, C Liu, Z Gao, B Lu, X Tong, X Guo, N Yang. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation. Small, 2019, 15(38): 1902951
https://doi.org/10.1002/smll.201902951
150 Y Dong, J B Chen, J Ying, Y X Xiao, G Tian, M D Symes, X Y Yang. Efficient water dissociation on confined ultrafine Pt via pyridinic N-enhanced heavy d−π interaction. Chemistry of Materials, 2022, 34(18): 8271–8279
https://doi.org/10.1021/acs.chemmater.2c01738
151 H Fan, M Cheng, L Wang, Y Song, Y Cui, R Wang. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy, 2018, 48: 1–9
https://doi.org/10.1016/j.nanoen.2018.03.018
[1] Yu Liu, Lin Chen, Yong Wang, Yuan Dong, Liang Zhou, Susana I. Córdoba de Torresi, Kenneth I. Ozoemena, Xiao-Yu Yang. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1698-1706.
[2] Weihang Sun, Dongfang Liu, Minghui Zhang. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1427-1443.
[3] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[4] Zhiyi Wu,Zafar Iqbal,Xianqin Wang. Metal-free, carbon-based catalysts for oxygen reduction reactions[J]. Front. Chem. Sci. Eng., 2015, 9(3): 280-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed