Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 2037-2049    https://doi.org/10.1007/s11705-023-2358-0
RESEARCH ARTICLE
Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration
Jiafeng Ouyang1,2, Wenlu Guo2,3, Lin Wang2, Changming Nie3, Dadong Shao1(), Weiqun Shi2, Liyong Yuan2()
1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
 Download: PDF(3578 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although mesoporous silica with magnetically hybridized two-dimensional channel structures has been well studied in recent years, it remains a challenge to fabricate the counterpart with macroporous three-dimensional cubic structures since the highly acidic preparation conditions lead to dissolution of magnetic particles. Herein, we successfully prepared magnetic KIT-6 nano-composite and its amino derivatives by bearing acid-resistant iron oxide. The prepared materials exhibited excellent properties for U(VI) ions removal from aqueous solutions under various conditions. The experimental data show that the U(VI) adsorption features fast adsorption kinetics, high adsorption capacity and ideal selectivity toward U(VI). The adsorption process is of spontaneous and endothermic nature and ionic strength independence, and the adsorbents can be easily regenerated by acid treatment. Compared to pristine KIT-6, the introduction of magnetism does not reduce the efficiency of the material to remove U(VI) while exerting its role as a recovery adsorbent. The findings of this work further demonstrate the potential broad application prospects of magnetic hybrid mesoporous silica in radionuclide chelation.

Keywords magnetic nanoparticle      3D mesoporous silica      amino functionalization      adsorption of U(VI)      acid resistance     
Corresponding Author(s): Dadong Shao,Liyong Yuan   
Online First Date: 18 October 2023    Issue Date: 30 November 2023
 Cite this article:   
Jiafeng Ouyang,Wenlu Guo,Lin Wang, et al. Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2037-2049.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2358-0
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/2037
  Scheme1 Schematic diagram of preparation of MKIT-6-XN.
Fig.1  SEM images of (a) Fe3O4, (b) MKIT-6, and (c) MKIT-6-40N; TEM images of (d) KIT-6, (e) MKIT-6, and (f) MKIT-6-40N.
Fig.2  Characterization of magnetic KIT-6 nanocomposite and its amino derivatives. (a) Wide-angle PXRD patterns of Fe3O4 and MKIT-6; (b) small-angle PXRD patterns of KIT-6, MKIT-6 and MKIT-6-40N; (c) FTIR spectra of KIT-6, MKIT-6, MKIT-6-40N, U(VI) loaded MKIT-6-40N; (d) TGA profile of MKIT-6 and MKIT-6-40N; (e) N2 adsorption/desorption isotherm of KIT-6, MKIT-6 and MKIT-6-40; (f) the respective non-local density functional theory PSDs calculated from the desorption branch.
SBET/(m2·g–1)VT/(cm3·g–1)Pore size/nm
KIT-6609.50.513.9
MKIT-6541.80.383.6
MKIT-6-40N249.20.213.0
Tab.1  N2 adsorption results
Fig.3  (a) Effect of pH on the U(VI) adsorption (madsorbent/Vsolution = 0.4 mg·mL–1, [U]initial = 100 mg·L–1, T = 288 K); (b) zeta potentials of KIT-6, MKIT-6 and MKIT-6-40N as a function of pH.
Fig.4  The adsorption kinetics study of KIT-6, MKIT-6 and MKIT-6-40N. (a) Effect of the contacting time (pH = 5.0, madsorbent/Vsolution = 0.4 mg·mL–1, [U]initial = 100 mg·L–1, T = 288 K); (b) the scattered points represent experiment data of MKIT-6-40N, while the red lines represent fitting by the pseudo-second-order model and the black dotted lines represent fitting by the pseudo-first-order model.
Pseudo-first-orderPseudo-second-order
qe/ (mg·g–1)k1/ min–1R2qe / (mg·g–1)k2/ (g·mg–1·min–1)R2
KIT-627.91.11 × 10?20.89131.61.41 × 10?30.999
MKIT-626.21.09 × 10?20.89125.01.51 × 10?30.999
MKIT-6-40N143.38.03 × 10?30.99184.55.32 × 10?50.992
Tab.2  Kinetics model constants and correlation coefficients for U(VI) adsorption
LangmuirFreundlich
q0/(mg·g–1)b/(L·mg–1)R2KF/(mg·g–1)nR2
158.70.430.9929.12.30.75
Tab.3  Isotherm model constants and correlation coefficients for U(VI) adsorption
Fig.5  Adsorption isotherms study to MKIT-6-40N (pH = 5.0, madsorbent/Vsolution = 0.4 mg·mL–1, [U]initial = 100 mg·L–1, T = 288 K; the scattered points represent experimental data, while the red solid line represents the fitting by Langmuir model).
Fig.6  (a) Adsorption capacity of MKIT-6-40N for U(VI) at different temperatures, pH = 5.0, madsorbent/Vsolution = 0.4 mg·mL–1, [U]initial = 100 mg·L–1; (b) relationship curve between lnKd and T–1.
ΔHo/(kJ·mol–1)ΔSo/(J·mol–1·K–1)ΔGo/(kJ·mol–1)
288 K293 K298 K303 K308 K
65.4295.4–19.7–21.2–22.6–24.1–25.6
Tab.4  Thermodynamic parameters for the U(VI) adsorption
Fig.7  Impact of ionic strength on the U(VI) ion removal (pH = 5.0, [U]initial = 100 mg·L–1, madsorbent/Vsolution = 0.4 mg·mL–1, T = 288 K).
Fig.8  Competitive adsorption in the removal of U(VI) ions (pH = 5.0, [U]initial = 100 mg·L–1, madsorbent/Vsolution = 0.4 mg·mL–1, T = 288 K).
Fig.9  The image of magnetic separation.
Fig.10  (a) Released Fe in HNO3 solutions and (b) the changes of adsorption capacity in 4 cycles, pH = 5.0, [U]initial = 100 mg·L–1, madsorbent/Vsolution = 0.4 mg·mL–1, T = 288 K.
1 A Dilshani, A Wijayananda, M Rathnayake. Life cycle net energy and global warming impact assessment for hydrogen production via decomposition of ammonia recovered from source-separated human urine. International Journal of Hydrogen Energy, 2022, 47(57): 24093–24106
https://doi.org/10.1016/j.ijhydene.2022.05.188
2 B Zhao, L Y Yuan, Y Wang, T Duan, W Q Shi. Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Applied Materials & Interfaces, 2021, 13(14): 16300–16308
https://doi.org/10.1021/acsami.1c00364
3 P Mei, J T Xiao, X S Huang, A Ishag, Y B Sun. Enhanced photocatalytic reduction of U(VI) on SrTiO3/g-C3N4 composites: synergistic interaction. European Journal of Inorganic Chemistry, 2022, 2022(7): e202101005
https://doi.org/10.1002/ejic.202101005
4 A Chandrasekar, A Suresh, M Joshi, M Sundararajan, T K Ghanty, N Sivaraman. Highly selective separations of U(VI) from a Th(IV) matrix by branched butyl phosphates: insights from solvent extraction, chromatography and quantum chemical calculations. Separation and Purification Technology, 2019, 210: 182–194
https://doi.org/10.1016/j.seppur.2018.08.005
5 N Sharma, A Ghosh, J D Fortner, D E Giammar. Modeling performance of rhamnolipid-coated engineered magnetite nanoparticles for U(VI) sorption and separation. Environmental Science. Nano, 2020, 7(7): 2010–2020
https://doi.org/10.1039/D0EN00416B
6 D Gomes Rodrigues, S Monge, N Dacheux, S Pellet-Rostaing, C Faur. Highlighting the selective properties of carbamoylmethylphosphonated hydrosoluble polymers for Gd(III)/Th(IV)/U(VI) separation. Separation and Purification Technology, 2021, 254: 117260
https://doi.org/10.1016/j.seppur.2020.117260
7 Y D Guo, S H Li, F Yang, C X Li, Y P Guo, K Xuan, G H Wang, Y H Liu, J Li. Efficient charge separation in sulfur doped AgFeO2 photocatalyst for enhanced photocatalytic U(VI) reduction: the role of doping and mechanism insights. Journal of Hazardous Materials, 2022, 440: 129734
https://doi.org/10.1016/j.jhazmat.2022.129734
8 M H Su, H Li, Z Q Liu, H R Peng, S Huang, Y Zhou, C Z Liao, G Song, D Y Chen. Highly-efficient and easy separation of gamma-Fe2O3 selectively adsorbs U(VI) in waters. Environmental Research, 2022, 210: 112917
https://doi.org/10.1016/j.envres.2022.112917
9 G Chen, H Q Weng, Z H Wu, Y Z Chen, P Zhang, G A Ye, M Z Lin. High-yield production of monolayer boron nitride nanosheets by cationic-surfactant-assisted solvothermal exfoliation for the ultrafast and selective separation of U(VI) from lanthanides. Separation and Purification Technology, 2022, 278: 119645
10 L J Guo, L Q Peng, J H Li, W H Zhang, B Shi. Simultaneously efficient adsorption and highly selective separation of U(VI) and Th(IV) by surface-functionalized lignin nanoparticles: a novel pH-dependent process. Journal of Hazardous Materials, 2023, 443: 130123
https://doi.org/10.1016/j.jhazmat.2022.130123
11 Z S Chen, J Y Wang, M J Hao, Y H Xie, X L Liu, H Yang, G I N Waterhouse, X K Wang, S Q Ma. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nature Communications, 2023, 14(1): 1106
https://doi.org/10.1038/s41467-023-36710-x
12 H Yang, M J Hao, Y H Xie, X L Liu, Y F Liu, Z S Chen, X K Wang, G I N Waterhouse, S Q Ma. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angewandte Chemie-International Edition, 2023, 62(30): e202303129
13 W Li, D Y Zhao. An overview of the synthesis of ordered mesoporous materials. Chemical Communications, 2013, 49(10): 943–946
https://doi.org/10.1039/C2CC36964H
14 F Hoffmann, M Cornelius, J Morell, M Froba. Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie International Edition, 2006, 45(20): 3216–3251
https://doi.org/10.1002/anie.200503075
15 P Makowski, X Deschanels, A Grandjean, D Meyer, G Toquer, F Goettmann. Mesoporous materials in the field of nuclear industry: applications and perspectives. New Journal of Chemistry, 2012, 36(3): 531–541
https://doi.org/10.1039/C1NJ20703B
16 N Koike, T Ikuno, T Okubo, A Shimojima. Synthesis of monodisperse organosilica nanoparticles with hollow interiors and porous shells using silica nanospheres as templates. Chemical Communications, 2013, 49(44): 4998–5000
https://doi.org/10.1039/c3cc41904e
17 Y L Liu, L Y Yuan, Y L Yuan, J H Lan, Z J Li, Y X Feng, Y L Zhao, Z F Chai, W Q Shi. A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(2): 803–810
https://doi.org/10.1007/s10967-011-1515-y
18 P J Lebed, K De Souza, F Bilodeau, D Lariviere, F Kleitz. Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent. Chemical Communications, 2011, 47(41): 11525–11527
https://doi.org/10.1039/c1cc14053a
19 X Yang, J Su, J J Xiong, H B Wang. Preparation of nano-silica with radial wrinkle structures for self-cleaning and superhydrophobic coatings. Fibers and Polymers, 2022, 23(5): 1293–1299
https://doi.org/10.1007/s12221-022-4580-7
20 L Y Yuan, Y L Liu, W Q Shi, Y L Lv, J H Lan, Y L Zhao, Z F Chai. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Transactions, 2011, 40(28): 7446–7453
https://doi.org/10.1039/c1dt10085h
21 L Y Yuan, L Zhu, C L Xiao, Q Y Wu, N Zhang, J P Yu, Z F Chai, W Q Shi. Large-pore 3D cubic mesoporous (KIT-6) hybrid bearing a hard-soft donor combined ligand for enhancing U(VI) capture: an experimental and theoretical investigation. ACS Applied Materials & Interfaces, 2017, 9(4): 3774–3784
https://doi.org/10.1021/acsami.6b15642
22 V Hegde, P Pandit, P Rananaware, V P Brahmkhatri. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Frontiers of Chemical Science and Engineering, 2022, 16(8): 1198–1210
https://doi.org/10.1007/s11705-021-2133-z
23 L Y Yuan, Y L Liu, W Q Shi, Z J Li, J H Lan, Y X Feng, Y L Zhao, Y L Yuan, Z F Chai. A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. Journal of Materials Chemistry, 2012, 22(33): 17019–17026
https://doi.org/10.1039/c2jm31766d
24 X L Wang, L Y Yuan, Y F Wang, Z J Li, J H Lan, Y L Liu, Y X Feng, Y L Zhao, Z F Chai, W Q Shi. Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China. Chemistry, 2012, 55(9): 1705–1711
https://doi.org/10.1007/s11426-012-4625-7
25 W Zhang, G Ye, J Chen. Novel mesoporous silicas bearing phosphine oxide ligands with different alkyl chains for the binding of uranium in strong HNO3 media. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(41): 12706–12709
https://doi.org/10.1039/c3ta13028b
26 J L Vivero-Escoto, M Carboni, C W Abney, K E Dekrafft, W B Lin. Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous and Mesoporous Materials, 2013, 180: 22–31
https://doi.org/10.1016/j.micromeso.2013.05.030
27 S W Chen, B L Guo, Y L Wang, Y Li, L J Song. Study on sorption of U(VI) onto ordered mesoporous silicas. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(2): 1435–1442
https://doi.org/10.1007/s10967-012-1998-1
28 P J Lebed, J D Savoie, J Florek, F Bilodeau, D Lariviere, F Kleitz. Large pore mesostructured organosilica-phosphonate hybrids as highly efficient and regenerable sorbents for uranium sequestration. Chemistry of Materials, 2012, 24(21): 4166–4176
https://doi.org/10.1021/cm3023709
29 J S Cui, W K Li, X L Song, Z T Zhang, H B Yu, W J Shan, Y Xiong. Microwave-assisted one-pot rapid synthesis of mesoporous silica-chitosan composites for efficient recovery of rhenium(VII). Separation and Purification Technology, 2021, 277: 119497
https://doi.org/10.1016/j.seppur.2021.119497
30 Y Xiong, L S Xie, L Zhu, Y J Wang, W J Shan, Z N Lou, J S Cui, H B Yu. Superior adsorption of Re(VII) by anionic imprinted chitosan-silica composite: adsorption performance, selectivity and mechanism study. Journal of Industrial and Engineering Chemistry, 2022, 108: 344–355
https://doi.org/10.1016/j.jiec.2022.01.013
31 A M Showkat, Y P Zhang, M S Kim, A I Gopalan, K R Reddy, K P Lee. Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bulletin of the Korean Chemical Society, 2007, 28(11): 1985–1992
https://doi.org/10.5012/bkcs.2007.28.11.1985
32 N Kothalawala, J P Blitz, V M Gun’ko, M Jaroniec, B Grabicka, R F Semeniuc. Post-synthesis surface-modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions. Journal of Colloid and Interface Science, 2013, 392: 57–64
https://doi.org/10.1016/j.jcis.2012.10.037
33 J A Bae, K C Song, J K Jeon, Y S Ko, Y K Park, J H Yim. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation. Microporous and Mesoporous Materials, 2009, 123(1–3): 289–297
https://doi.org/10.1016/j.micromeso.2009.04.015
34 J P Kitt, J M Harris. Confocal raman microscopy for in situ detection of solid-phase extraction of pyrene into single C-18-silica particles. Analytical Chemistry, 2014, 86(3): 1719–1725
https://doi.org/10.1021/ac403514r
35 P C Zhang, L Wang, K Du, S Y Wang, Z W Huang, L Y Yuan, Z J Li, H Q Wang, L R Zheng, Z F Chai, W Shi. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396: 122731
https://doi.org/10.1016/j.jhazmat.2020.122731
36 D I Kim, J H Park, S D Kim, J Y Lee, J H Yim, J K Jeon, S H Park, Y K Park. Comparison of removal ability of indoor formaldehyde over different materials functionalized with various amine groups. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 1–5
https://doi.org/10.1016/j.jiec.2010.12.010
37 Y Zhao, S R Zhai, B Zhai, Q D An. Heavy metal removal of tri-amino-functionalized sol-gel hybrids with tailored characteristics. Journal of Sol-Gel Science and Technology, 2012, 62(2): 177–185
https://doi.org/10.1007/s10971-012-2706-x
38 Y Sun, X Liu, C G Sun, W Al-Sarraf, K Z Foo, Y Meng, S Lee, W L Wang, H Liu. Synthesis and functionalisation of spherical meso-, hybrid meso/macro- and macro-porous cellular silica foam materials with regulated pore sizes for CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23587–23601
https://doi.org/10.1039/C8TA06224B
39 G Wang, A N Otuonye, E A Blair, K Denton, Z M Tao, T Asefa. Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. Journal of Solid State Chemistry, 2009, 182(7): 1649–1660
https://doi.org/10.1016/j.jssc.2009.03.034
40 O Leal, C Bolivar, C Ovalles, J J Garcia, Y Espidel. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorganica Chimica Acta, 1995, 240(1–2): 183–189
https://doi.org/10.1016/0020-1693(95)04534-1
41 A Popa, S Borcanescu, I Holclajtner-Antunovic, D Bajuk-Bogdanovic, S Uskokovic-Markovic. Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture. Journal of Porous Materials, 2021, 28(1): 143–156
https://doi.org/10.1007/s10934-020-00974-1
42 Y F Huang, B Zhang, B B Liu, G H Han, Y F Du, S P Su. Adsorption behaviors of strategic W/Mo/Re from wastewaters by novel magnetic ferrite nanoparticles: adsorption mechanism underlying selective separation. Journal of Hazardous Materials, 2022, 424: 127675
https://doi.org/10.1016/j.jhazmat.2021.127675
43 H Nekounam, M Babaei, M F Kisomi, S Pourkhodadad, N Mahmoodi, A Nazbar, E Hasanzadeh, M Zarei, R Faridi-Majidi. Application of functional magnetic nanoparticles for separation of target materials: a review. Current Nanoscience, 2022, 18(5): 554–570
https://doi.org/10.2174/1573413717666210708162149
44 T T Liu, L H Liu, J Liu, S M Liu, S Z Qiao. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8(1): 114–122
https://doi.org/10.1007/s11705-014-1413-2
45 S Liang, Z Ziyu, J Han, D Xiaoyan. Facile synthesis of magnetic mesoporous silica spheres for efficient removal of methylene blue via catalytic persulfate activation. Separation and Purification Technology, 2021, 256: 117801
https://doi.org/10.1016/j.seppur.2020.117801
46 A Radoń, S Łoński, M Kądziołka-Gaweł, P Gębara, M Lis, D Łukowiec, R Babilas. Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 607: 125446
https://doi.org/10.1016/j.colsurfa.2020.125446
47 G J Ji, G R Zhu, X H Wang, Y L Wei, J S Yuan, C J Gao. Preparation of amidoxime functionalized SBA-15 with platelet shape and adsorption property of U(VI). Separation and Purification Technology, 2017, 174: 455–465
https://doi.org/10.1016/j.seppur.2016.10.048
48 D E Li, S Egodawatte, D I Kaplan, S C Larsen, S M Serkiz, J C Seaman, K G Scheckel, J R Lin, Y M Pan. Sequestration of U(VI) from acidic, alkaline, and high ionic-strength aqueous media by functionalized magnetic mesoporous silica nanoparticles: capacity and binding mechanisms. Environmental Science & Technology, 2017, 51(24): 14330–14341
https://doi.org/10.1021/acs.est.7b03778
49 F L Liu, A J Wang, M Xiang, Q Y Hu, B W Hu. Effective adsorption and immobilization of Cr(VI) and U(VI) from aqueous solution by magnetic amine-functionalized SBA-15. Separation and Purification Technology, 2022, 282: 120042
https://doi.org/10.1016/j.seppur.2021.120042
50 Y G Zhao, J X Li, S W Zhang, X K Wang. Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI). RSC Advances, 2014, 4(62): 32710–32717
https://doi.org/10.1039/C4RA05128A
51 L M Zhou, J B Ouyang, Z R Liu, G L Huang, Y Wang, Z Li, A A Adesina. Highly efficient sorption of U(VI) from aqueous solution using amino/amine-functionalized magnetic mesoporous silica nanospheres. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319(3): 987–995
https://doi.org/10.1007/s10967-018-6381-4
52 T Sugimoto, E Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 1980, 74(1): 227–243
https://doi.org/10.1016/0021-9797(80)90187-3
53 W L Guo, C M Nie, L Wang, Z J Li, L Zhu, L Z Zhu, Z T Zhu, W Q Shi, L Y Yuan. Easily prepared and stable functionalized magnetic ordered mesoporous silica for efficient uranium extraction. Science China. Chemistry, 2016, 59(5): 629–636
https://doi.org/10.1007/s11426-016-5561-8
[1] FCE-23036-OF-OJ_suppl_1 Download
[1] Guiqin Bai, Jianzhong Xia, Bing Cao, Rui Zhang, Junquan Meng, Pei Li. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 709-719.
[2] Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb. Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1346-1355.
[3] Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore[J]. Front Chem Sci Eng, 2014, 8(1): 114-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed