Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (2) : 14    https://doi.org/10.1007/s11705-023-2377-x
Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature
Ling Ge1,2,3,4, Tao Liu1,2,3,4(), Yimin Zhang1,2,3,4,5, Hong Liu1,2,3,4
1. School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2. State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
3. Hubei Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan University of Science and Technology, Wuhan 430081, China
4. Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
5. School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(8726 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Herein, the influence of the concentration design and comprehensive performance of the sulfate-phosphoric mixed acid system electrolyte is investigated to realize an electrolyte that maintains high energy density and stable operation at high temperatures. Static stability tests have shown that VOPO4 precipitation occurs only with vanadium(V) electrolyte. The concentration of vanadium ion of 2.0–2.2 mol·L–1, phosphoric acid of 0.10–0.15 mol·L–1, and sulfuric acid of 2.5–3.0 mol·L–1 are suitable for a vanadium redox flow battery in the temperature range from –20 to 50 °C. The equations for predicting the viscosity and conductivity of electrolytes are obtained by the response surface method. The optimized electrolyte overcomes precipitation generation. It has 2.8 times higher energy density than the non-phosphate electrolyte, and a coulomb efficiency of 94.0% at 50 °C. The sulfate-phosphoric mixed acid system electrolyte promotes the electrode reaction process, increases the current density, and reduces the resistance. This work systematically optimizes the concentrations of composition of positive and negative vanadium electrolytes with mixed sulfate-phosphoric acid. It provides a basis for the different valence states and comprehensive properties of sulfate-phosphoric mixed acid system vanadium electrolytes under extreme environments, guiding engineering applications.

Keywords all vanadium redox flow battery      mixed-acid vanadium electrolyte      concentration optimization      response surface methodology      high-temperature stability     
Corresponding Author(s): Tao Liu   
Just Accepted Date: 06 November 2023   Issue Date: 15 January 2024
 Cite this article:   
Ling Ge,Tao Liu,Yimin Zhang, et al. Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature[J]. Front. Chem. Sci. Eng., 2024, 18(2): 14.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2377-x
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I2/14
Fig.1  Static stability test of the vanadium(V) electrolytes. (a) Stability time and residual vanadium concentration of electrolytes with different phosphoric concentrations (0?0.5 mol·L–1); (b) residual vanadium concentration of electrolytes with different phosphoric concentrations (0?0.5 mol·L–1) at 50 °C; residual vanadium concentration of electrolytes with different (c) vanadium concentrations (1.6?2.4 mol·L–1) and (d) sulfate concentrations (2.5?4.5 mol·L–1).
Fig.2  XRD patterns of precipitation of electrolytes after static stability test at 50 °C: (a) without H3PO4, (b) with 0.1 mol·L–1 H3PO4, (c) with 0.2 mol·L–1 H3PO4, (d) with 0.3 mol·L–1 H3PO4, (e) with 0.4 mol·L–1 H3PO4, and (f) with 0.5 mol·L–1 H3PO4.
Fig.3  Static stability test of the vanadium(II), (III), (IV), and (V) electrolytes with different sulfate concentrations (2.5?3.5 mol·L–1) and phosphoric concentrations (0?0.2 mol·L–1) at –25 and 50 °C. The bars indicate the concentration of residual vanadium ions in the different valence states of vanadium electrolyte, purple (II), green (III), blue (IV) and yellow (V).
Fig.4  FTIR and Raman tests of the vanadium(V) and (II) electrolytes with and without H3PO4.
Standard orderFactor Aa)/(mol?L–1)Factor Bb)/(mol?L–1)Factor Cc)/(mol?L–1)Response 1d)/(mm2?s–1)Response 2e)/(ms?cm–1)
ActualPredictedActualPredicted
12.103.000.154.804.83282.10279.47
22.002.500.153.833.84272.20273.26
32.002.500.153.833.84272.33273.26
42.203.000.205.955.93242.83246.12
52.203.000.105.835.84245.83246.12
62.103.000.154.844.83282.00279.47
72.202.500.155.405.41256.60244.39
82.202.500.155.405.41235.03244.39
92.103.000.154.854.83282.03279.47
102.003.000.104.154.17301.13296.99
112.002.500.153.863.84271.40273.26
122.102.500.204.314.31250.63250.91
132.203.000.105.835.84245.83246.12
142.003.000.104.214.17289.87296.99
152.102.500.104.314.31258.90250.91
162.003.000.204.234.25296.10296.99
172.202.500.155.425.41237.67244.39
Tab.1  Experimental matrix and response values based on BBD
SourceResponse 1: viscosity/(mm2?s–1)Response 2: conductivity/(ms?cm–1)
Sum of squaresF-valuep-valueSum of squaresF-valuep-value
Model8.882448.21< 0.0001***6735.9619.760.0002***
A7.4816491.20< 0.0001***4556.73106.96< 0.0001***
B0.751651.96< 0.0001***1334.2731.320.0005***
C2.64 × 10?35.830.0422*32.580.760.4073
AB0.01123.700.0012**360.218.450.0197*
AC1.97 × 10?34.350.07064.320.100.7584
BC2.61 × 10?35.760.0432*18.160.430.5321
A20.24524.60< 0.0001***71.371.680.2317
B20.0000.000
C27.78 × 10?317.160.0032**183.224.300.0718
Tab.2  The results of the ANOVA for the fitting model
Fig.5  Plots of predicted values vs. experimental data: (a) viscosity and (b) conductivity.
Fig.6  Three-dimensional response surface graphs. Effect of vanadium ions and H2SO4 on (a) viscosity and (d) conductivity; effect of vanadium ions and phosphate acid on (b) viscosity and (e) conductivity; effect of H2SO4 and phosphate acid on (c) viscosity and (f) conductivity.
Fig.7  Trend curves of different factors on (a) viscosity and (b) conductivity.
SamplesJpa/(mA?cm–2)Jpc/(mA?cm–2)Jpa/JpcΔE/Vi0/(mA?cm–2)Rct/(Ω?cm–2)k0/(cm?s–1)
(2, 0, 3)81.7259.161.380.364.176.164.32 × 10?8
(2, 0.10, 3)77.3459.501.300.334.475.754.63 × 10?8
(2, 0.15, 3)75.9961.281.240.334.675.504.84 × 10?8
(2, 0.20, 3)75.4961.471.230.335.135.015.32 × 10?8
Tab.3  The main data of CV and Tafel curves of different vanadium(IV) electrolytes
Fig.8  The CV and Tafel steady-state polarization curves of vanadium(IV) electrolytes: (a) CV curves, (b) (2, 0, 3), (c) (2, 0.1, 3), (d) (2, 0.15, 3) and (e) (2, 0.2, 3), with Rct being the charge transfer resistance, i0 being the exchange current, and k0 being the standard reaction rate constant.
Fig.9  The VRFB performance of electrolytes with the sulfate-phosphoric mixed acid system and the sulfuric acid system. Electrolytes configurations: I represents (2, 0, 3) at 25 °C, II represents (2, 0, 3) at 50 °C, III represents (2, 0.15, 3) at 25 °C, and IV represents (2, 0.15, 3) at 50 °C. (a) Charge-discharge capacity during 100 cycles; (b) energy density and coulombic efficiency during 100 cycles; (c) discharge capacity vs. voltage; (d) voltage vs. time.
1 Z JiaD SunY ZhangJ Zheng. What China can learn from the US history of energy strategy development. Sino-global Energy, 2016, 21: 1–7 (in Chinese)
2 H Dai , Y Su , L Kuang , J Liu , D Gu , C Zou . Contemplation on China’s energy-development strategies and initiatives in the context of its carbon neutrality goal. Engineering, 2021, 7(12): 1684–1687
https://doi.org/10.1016/j.eng.2021.10.010
3 H M Yang , H T Zhou , P Zhao , B L Yi . Actuality and prospect of energy storage technologies. Research & Exploration, 2005, 3: 1–7
4 P C Ghimire , A Bhattarai , T M Lim , N Wai , M Skyllas-Kazacos , Q Yan . In-situ tools used in vanadium redox flow battery research—review. Batteries, 2021, 7(3): 53
https://doi.org/10.3390/batteries7030053
5 A Parasuraman , T M Lim , C Menictas , M Skyllas-Kazacos . Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta, 2013, 101: 27–40
https://doi.org/10.1016/j.electacta.2012.09.067
6 C Ding , X Ni , X Li , X Xi , X Han , X Bao , H Zhang . Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries. Electrochimica Acta, 2015, 164: 307–314
https://doi.org/10.1016/j.electacta.2015.02.187
7 C DoetschJ Burfeind. Chapter 12—Vanadium redox flow batteries. Storing Energy, 2016, 227–247
8 S Kim. Vanadium redox flow batteries: electrochemical engineering. Energy Storage Devices, 2019, 1–19
9 G Kear , A A Shah , F C Walsh . Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. International Journal of Energy Research, 2012, 36(11): 1105–1120
https://doi.org/10.1002/er.1863
10 C Ding , H Zhang , X Li , T Liu , F Xing . Vanadium flow battery for energy storage: prospects and challenges. Journal of Physical Chemistry Letters, 2013, 4(8): 1281–1294
https://doi.org/10.1021/jz4001032
11 F Rahman , M Skyllas-Kazacos . Vanadium redox battery: positive half-cell electrolyte studies. Journal of Power Sources, 2009, 189(2): 1212–1219
https://doi.org/10.1016/j.jpowsour.2008.12.113
12 W M Jr Carvalho , L Cassayre , D Quaranta , F Chauvet , R El-Hage , T Tzedakis , B Biscans . Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery. Journal of Energy Chemistry, 2021, 61: 436–445
https://doi.org/10.1016/j.jechem.2021.01.040
13 Y Yang , Y Zhang , L Tang , T Liu , S Peng , X Yang . Improved energy density and temperature range of vanadium redox flow battery by controlling the state of charge of positive electrolyte. Journal of Power Sources, 2020, 450: 227675
https://doi.org/10.1016/j.jpowsour.2019.227675
14 G Wang , J Chen , X Wang , J Tian , H Kang , X Zhu , Y Zhang , X Liu , R Wang . Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery. Journal of Energy Chemistry, 2014, 23(1): 73–81
https://doi.org/10.1016/S2095-4956(14)60120-0
15 Y Yang , Y Zhang , L Tang , T Liu , J Huang , S Peng , X Yang . Investigations on physicochemical properties and electrochemical performance of sulfate–chloride mixed acid electrolyte for vanadium redox flow battery. Journal of Power Sources, 2019, 434: 226719
https://doi.org/10.1016/j.jpowsour.2019.226719
16 Z Huang , A Mu . Research and analysis of performance improvement of vanadium redox flow battery in microgrid: a technology review. International Journal of Energy Research, 2021, 45(10): 14170–14193
https://doi.org/10.1002/er.6716
17 Y Cheng , X Wang , S Huang , W Samarakoon , S Xi , Y Ji , H Zhang , F Zhang , Y Du , Z Feng . et al.. Redox targeting-based vanadium redox-flow battery. ACS Energy Letters, 2019, 4(12): 3028–3035
https://doi.org/10.1021/acsenergylett.9b01939
18 D Kim , J Jeon . A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries. Journal of Electroanalytical Chemistry, 2017, 801: 92–97
https://doi.org/10.1016/j.jelechem.2017.07.037
19 A Mousa , M Skyllas-Kazacos . Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte. ChemElectroChem, 2015, 2(11): 1742–1751
https://doi.org/10.1002/celc.201500233
20 L Li , S Kim , W Wang , M Vijayakumar , Z Nie , B Chen , J Zhang , G Xia , J Hu , G Graff . et al.. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Energy Materials, 2011, 1(3): 394–400
https://doi.org/10.1002/aenm.201100008
21 Z He , Y He , C Chen , S Yang , J Liu , Z He , S Liu . Study of the electrochemical performance of VO2+/VO2+ redox couple in sulfamic acid for vanadium redox flow battery. Ionics, 2014, 20(7): 949–955
https://doi.org/10.1007/s11581-013-1051-6
22 S Peng , N F Wang , X J Wu , S Q Liu , D Fang , K L Huang , Y N Liu . Vanadium species in CH3SO3H and H2SO4 mixed acid as the supporting electrolyte for vanadium redox flow battery. International Journal of Electrochemical Science, 2012, 7(1): 643–649
https://doi.org/10.1016/S1452-3981(23)13365-7
23 Y Chu , C Liu , H Ren , Y Zhang , C Ma . Electrochemical performance of VO2+/VO2+ redox couple in the H2SO4–CH3SO3H solutions. International Journal of Electrochemical Science, 2016, 11(3): 1987–1996
https://doi.org/10.1016/S1452-3981(23)16077-9
24 G Nikiforidis , A Belhcen , M Anouti . A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery. Journal of Energy Chemistry, 2021, 57: 238–246
https://doi.org/10.1016/j.jechem.2020.09.001
25 Y Yang , Y Zhang , T Liu , J Huang . Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate–chloride mixed acid by optimizing the concentration of electrolyte. Journal of Power Sources, 2019, 415: 62–68
https://doi.org/10.1016/j.jpowsour.2019.01.049
26 C Fan , H Yang , Q Zhu . Preparation and electrochemical properties of high purity mixed-acid electrolytes for high energy density vanadium redox flow battery. International Journal of Electrochemical Science, 2017, 12(8): 7728–7738
https://doi.org/10.20964/2017.08.57
27 Z H Zhang , L Wei , M C Wu , B F Bai , T S Zhao . Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries. Applied Energy, 2021, 289: 116690
https://doi.org/10.1016/j.apenergy.2021.116690
28 F J Oldenburg , M Bon , D Perogo , D Polino , T Laino , L Gubler , T Schmidt . Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and in situ analysis. Physical Chemistry Chemical Physics, 2018, 20(36): 23664–23673
29 T D Nguyen , L P Wang , A Whitehead , N Wai , G G Scherer , Z J Xu . Insights into the synergistic effect of ammonium and phosphate-containing additives for a thermally stable vanadium redox flow battery electrolyte. Journal of Power Sources, 2018, 402: 75–81
https://doi.org/10.1016/j.jpowsour.2018.09.024
30 J Zhang , L Li , Z Nie , B Chen , M Vijayakumar , S Kim , W Wang , B Schwenzer , J Liu , Z Yang . Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1215–1221
https://doi.org/10.1007/s10800-011-0312-1
31 Y Zhang , J Xi , L Liu , Z Wu . Boosting the thermal stability of electrolytes in vanadium redox flow batteries via 1-hydroxyethane-1,1-diphosphonic acid. Journal of Applied Electrochemistry, 2020, 50(2): 255–264
https://doi.org/10.1007/s10800-019-01384-1
32 M Vijayakumar , L Li , G Graff , J Liu , H Zhang , Z Yang , J Z Hu . Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. Journal of Power Sources, 2011, 196(7): 3669–3672
https://doi.org/10.1016/j.jpowsour.2010.11.126
33 M Kazacos , M Skyllas-Kazacos . High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy density vanadium electrolyte solutions. international pat. Application, 1996, (PCT/AU96/00268): USPat.7078123
34 Y Zhang , R Haushalter , J Zubieta . Hydrothermal synthesis and crystal and molecular structure of a binuclear dioxovanadium(V) species exhibiting a bridging HPO42– ligand, [(VO2)2(HPO4)(2,2ˈ-bipy)2]∙H2O. Inorganica Chimica Acta, 1997, 260: 105–110
https://doi.org/10.1016/S0020-1693(96)05545-4
35 F T Silva , T Ogasawara . Transactions of the institution of mining and metallurgy section C. Mineral Processing and Extractive Metallurgy, 1993, 102: 188
36 S Roe , C Menictas , M Skyllas-Kazacos . A high energy density vanadium redox flow battery with 3 mol·L–1 vanadium electrolyte. Journal of the Electrochemical Society, 2016, 163(1): A5023–A5028
https://doi.org/10.1149/2.0041601jes
37 R A Cox , Ü L Haldna , K L Idler , K Yates . Resolution of Raman spectra of aqueous sulfuric acid mixtures using principal factor analysis. Canadian Journal of Chemistry, 1981, 59(17): 2591–2598
https://doi.org/10.1139/v81-372
38 M Skyllas-Kazacos , L Cao , M Kazacos , N Kausar , A Mousa . Vanadium electrolyte studies for the vanadium redox battery—a review. ChemSusChem, 2016, 9(13): 1521–1543
https://doi.org/10.1002/cssc.201600102
39 L Li , A Ma , G Zeng , H Li . Syntheses and infrared spectra of rare earth complexes with diethyl phosphate. Journal of Rare Earths, 1991, 9(2): 95–99
40 S Q XiS Q LanG F ZengG Y Hong. Infrared and Raman spectra of rare earth pentaphosphates. Guangpuxue Yu Guangpu Fenxi, 1984, 4(1): 8–15 (in Chinese)
41 N V Roznyatovskaya , V A Roznyatovsky , C C Höhne , M Fühl , T Gerber , M Küttinger , J Noack , P Fischer , K Pinkwart , J Tübke . The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries. Journal of Power Sources, 2017, 363: 234–243
https://doi.org/10.1016/j.jpowsour.2017.07.100
42 T W Zhang , X C Liu , G F Wang , H Liu , L Xiao , Y H Zhou , Q Liang , C W Zhang . Core-shell microstructured nanocomposites optimized based on Box-Behnken design for enhanced suppression of hydrogen co-flow flames. International Journal of Hydrogen Energy, 2021, 46(21): 12035–12061
https://doi.org/10.1016/j.ijhydene.2020.12.201
43 Q W Wang , D N Bai , M T Shen , L H Wang , S Jin . Optimization of Rhododendri daurici oil liposome by Box-Behnken design and response surface method. Journal of Hainan Medical College, 2022, 28(2): 16–22
44 B Davarcioglu . The general characteristic of weak intermolecular interactions in liquids and crystals. International Journal of Modern Engineering Research, 2011, 1(2): 443–454
45 A F Izmailov , A S Myerson . Relationship between solution shear viscosity and density at the saturation point. Journal of Crystal Growth, 1996, 166(1–4): 261–265
https://doi.org/10.1016/0022-0248(95)00526-9
46 M Assassi , F Madjene , S Harchouche , H Boulfiza . Photocatalytic treatment of crystal violet in aqueous solution: Box-Behnken optimization and degradation mechanism. Environmental Progress & Sustainable Energy, 2021, 40(6): e13702
https://doi.org/10.1002/ep.13702
47 H M Zhang. Technology and application of fluid flow battery energy storage. Science Press, 2022 (in Chinese)
48 H Liu , Y Zhang , T Liu , J Huang , L M Chen , Y W Hu . Preparation of vanadium electrolyte from vanadium shale leaching solution with high concentration chloride using D2EHPA. Transactions of Nonferrous Metals Society of China, 2023, 33(5): 1594–1608
https://doi.org/10.1016/S1003-6326(23)66206-5
49 E T McAdams , A Lackermeier , J A McLaughlin , D Macken , J Jossinet . The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosensors & Bioelectronics, 1995, 10(1–2): 67–74
https://doi.org/10.1016/0956-5663(95)96795-Z
50 H Agarwal , J Florian , B R Goldsmith , N Singh . The effect of anion bridging on heterogeneous charge transfer for V2+/V3+. Cell Reports. Physical Science, 2021, 2(1): 100307
https://doi.org/10.1016/j.xcrp.2020.100307
51 S Q Song , X Chen , W N Guo , Y S Fan , B G Wang . Study on transport behaviors of vanadium ions and water across nano-porous proton-conductive membranes. Membrane Science and Technology, 2014, 34(01): 9–14
[1] Yachao Dong, Christos Georgakis, Jacob Santos-Marques, Jian Du. Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J]. Front. Chem. Sci. Eng., 2022, 16(2): 221-236.
[2] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[3] M. DILIPKUMAR, M. RAJASIMMAN, N. RAJAMOHAN. Application of statistical design for the production of inulinase by streptomyces sp. using pressmud[J]. Front Chem Sci Eng, 2011, 5(4): 463-470.
[4] R. RAJESHKANNAN, N. RAJAMOHAN, M. RAJASIMMAN. Removal of malachite green from aqueous solution by sorption on hydrilla verticillata biomass using response surface methodology[J]. Front Chem Eng Chin, 2009, 3(2): 146-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed