Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (2) : 18    https://doi.org/10.1007/s11705-024-2383-7
Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles
Yayun Zhao1,2, Dechuan Zhao1,3(), Chunlong Kong1, Yichao Lin1, Xuezhen Wang1(), Liang Chen1,2()
1. Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University, Nanchong 637009, China
 Download: PDF(4615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal-organic framework/organosilica hybrid membranes on tubular ceramic substrates have shown great potential for the implementation of membrane technology in practical gas separation projects due to their higher permeance compared to commercial polymers. However, the selectivities of the reported membranes are moderate. Here, we have incorporated urea-modulated metal-organic frameworks into organosilica membranes to greatly enhance its separation performance. The urea-modulated metal-organic frameworks exhibit less-defined edges of crystallographic facets and high defect density. They can be well-dispersed in the organosilica layer, which substantially suppresses the interfacial defects between metal-organic frameworks and organosilica, which is beneficial for improving the selectivity of membranes for gas separation. The results have shown that the enhanced ideal selectivity of H2/CH4 was 165 and that of CO2/CH4 was 43, with H2 permeance of about 1.25 × 10−6 mol·m−2·s−1·Pa−1 and CO2 permeance of 3.27 × 10−7 mol·m−2·s−1·Pa−1 at 0.2 MPa and 25 °C. In conclusion, the high level of hybrid membranes can be used to separate H2 (or CO2) from the binary gas mixture H2/CH4 (or CO2/CH4), which is important for gas separation in practical applications. Moreover, the simple and feasible modulation of metal-organic framework is a promising strategy to tune different metal-organic frameworks for membranes according to the actual demands.

Keywords ZIF-8 nanocrystals      urea      organosilica      hybrid membrane      enhanced separation performance     
Corresponding Author(s): Dechuan Zhao,Xuezhen Wang,Liang Chen   
Just Accepted Date: 22 November 2023   Issue Date: 16 January 2024
 Cite this article:   
Yayun Zhao,Dechuan Zhao,Chunlong Kong, et al. Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles[J]. Front. Chem. Sci. Eng., 2024, 18(2): 18.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2383-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I2/18
Fig.1  Schematic illustration of the ZIF-8/organosilica membrane on the Al2O3 tubular substrate for gas separation.
MembraneOrganosilicaM1/1M2/1M3/1M4/1M1/1-refMZ90MZ90U20
MOF typesZIF-8-U20ZIF-8-U20ZIF-8-U20ZIF-8-U20ZIF-8-refZIF-90-refZIF-90-U20
Weight ratios of MOF to organosilica1:12:13:14:11:11:11:1
Tab.1  List of MOF/organosilica hybrid membranes prepared in this work
Fig.2  SEM images of (a) ZIF-8-ref, (b) ZIF-8-U10, (c) ZIF-8-U20, (d) ZIF-8-U30, (e) ZIF-8-U40, and (f) ZIF-8-U60.
Fig.3  Top-view SEM images of (a) the bare tube, (b) the tube modified by SiO2, and (c–g) the organosilica hybrid membranes with different amounts of ZIF-8-U20; cross-sectional SEM images of (h) the bare substrate, (i) substrate modified by SiO2, and (j–n) the organosilica hybrid membranes with different amounts of ZIF-8-U20.
Fig.4  Ideal selectivities of H2/CO2, H2/N2, H2/CH4, CO2/N2 and CO2/CH4 through the as-prepared ZIF-8/organosilica hybrid membranes: M0.5/1, M1/1, M2/1, M3/1, and M4/1. The inset displays the single gas permeances for the corresponding gases. Permeation is measured at T = 25 °C with ?p = 0.2 MPa.
Fig.5  Separation factors of H2/CH4, CO2/CH4 and CO2/N2 gas mixtures through the ZIF-8-U20/organosilica membrane (M1/1). Permeation is measured at T = 25 and 150 °C with ?p = 0.2 MPa.
Fig.6  Comparisons of (a) H2/CH4 selectivity and (b) CO2/CH4 selectivity of ZIF-8/organosilica with recently reported membranes based on the upper bounds. Detailed data in this plot are listed in Tables S2 and S3, respectively.
1 S Zhang , L Shen , H Deng , Q Liu , X You , J Yuan , Z Jiang , S Zhang . Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Advanced Materials, 2022, 34(21): 2108457
https://doi.org/10.1002/adma.202108457
2 D S Sholl , R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
3 P S GohA F Ismail. Chapter 9—Challenges, future directions, and conclusion. In: Goh P S, Ismail A F, eds. Nanocomposite Membranes for Gas Separation. Elsevier, 2020, 273–290
4 Y Jia , P Liu , Y Liu , D Zhang , Y Ning , C Xu , Y Zhang . In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification. Fuel, 2023, 339: 126938
https://doi.org/10.1016/j.fuel.2022.126938
5 Q Hou , Y Wu , S Zhou , Y Wei , J Caro , H Wang . Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angewandte Chemie International Edition, 2019, 58(1): 327–331
https://doi.org/10.1002/anie.201811638
6 E Choi , J I Choi , Y J Kim , Y J Kim , K Eum , Y Choi , O Kwon , M Kim , W Choi , H Ji . et al.. Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angewandte Chemie International Edition, 2022, 61(49): e202214269
https://doi.org/10.1002/anie.202214269
7 A AsadD SameotoM Sadrzadeh. Chapter 1—Overview of membrane technology. In: Sadrzadeh M, Mohammadi T, eds. Nanocomposite Membranes for Water and Gas Separation. Elsevier, 2020, 1–28
8 N C Su , D T Sun , C M Beavers , D K Britt , W L Queen , J J Urban . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931
https://doi.org/10.1039/C5EE02660A
9 J E Bachman , Z P Smith , T Li , T Xu , J R Long . Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nature Materials, 2016, 15(8): 845–849
https://doi.org/10.1038/nmat4621
10 Y Guo , Y Ying , Y Mao , X Peng , B Chen . Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 2016, 55(48): 15120–15124
https://doi.org/10.1002/anie.201607329
11 C Li , A Qi , Y Ling , Y Tao , Y B Zhang , T Li . Establishing gas transport highways in MOF-based mixed matrix membranes. Science Advances, 2023, 9(13): eadf5087
https://doi.org/10.1126/sciadv.adf5087
12 C Wang , Y Sun , L Li , R Krishna , T Ji , S Chen , J Yan , Y Liu . Titanium-oxo cluster assisted fabrication of a defect-rich Ti-MOF membrane showing versatile gas-separation performance. Angewandte Chemie International Edition, 2022, 61(26): e202203663
https://doi.org/10.1002/anie.202203663
13 Y Duan , L Li , Z Shen , J Cheng , K He . Engineering metal-organic-framework (MOF)-based membranes for gas and liquid separation. Membranes, 2023, 13(5): 480
https://doi.org/10.3390/membranes13050480
14 M Carta , R Malpass-Evans , M Croad , Y Rogan , J C Jansen , P Bernardo , F Bazzarelli , N B McKeown . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
https://doi.org/10.1126/science.1228032
15 J G Seong , Y Zhuang , S Kim , Y S Do , W H Lee , M D Guiver , Y M Lee . Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger’s base. Journal of Membrane Science, 2015, 480: 104–114
https://doi.org/10.1016/j.memsci.2015.01.022
16 Q Qian , A X Wu , W S Chi , P A Asinger , S Lin , A Hypsher , Z P Smith . Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility. ACS Applied Materials & Interfaces, 2019, 11(34): 31257–31269
https://doi.org/10.1021/acsami.9b07500
17 H F Qureshi , A Nijmeijer , L Winnubst . Influence of sol-gel process parameters on the micro-structure and performance of hybrid silica membranes. Journal of Membrane Science, 2013, 446: 19–25
https://doi.org/10.1016/j.memsci.2013.06.024
18 L Yu , M Kanezashi , H Nagasawa , M Guo , N Moriyama , K Ito , T Tsuru . Tailoring ultramicroporosity to maximize CO2 transport within pyrimidine-bridged organosilica membranes. ACS Applied Materials & Interfaces, 2019, 11(7): 7164–7173
https://doi.org/10.1021/acsami.9b01462
19 E Ş Mirza , B Topuz . Nanoscale tailoring on thin bimetallic organo-oxide membranes for H2/CO2 separation. Separation and Purification Technology, 2022, 280: 119801
https://doi.org/10.1016/j.seppur.2021.119801
20 C Kong , H Du , L Chen , B Chen . Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy & Environmental Science, 2017, 10(8): 1812–1819
https://doi.org/10.1039/C7EE00830A
21 L Ge , W Zhou , V Rudolph , Z Zhu . Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013, 1(21): 6350–6358
https://doi.org/10.1039/c3ta11131h
22 S He , B Zhu , X Jiang , G Han , S Li , C H Lau , Y Wu , Y Zhang , L Shao . Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2114964119
https://doi.org/10.1073/pnas.2114964119
23 K Chen , L Ni , H Zhang , L Li , X Guo , J Qi , Y Zhou , Z Zhu , X Sun , J Li . Phenolic resin regulated interface of ZIF-8 based mixed matrix membrane for enhanced gas separation. Journal of Membrane Science, 2023, 666: 121117
https://doi.org/10.1016/j.memsci.2022.121117
24 X Jiang , S He , G Han , J Long , S Li , C H Lau , S Zhang , L Shao . Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Applied Materials & Interfaces, 2021, 13(9): 11296–11305
https://doi.org/10.1021/acsami.0c22910
25 Y Zhao , C Zhou , C Kong , L Chen . Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation. JACS Au, 2021, 1(3): 328–335
https://doi.org/10.1021/jacsau.0c00073
26 Y Wang , Y Xu , H Ma , R Xu , H Liu , D Li , Z Tian . Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous and Mesoporous Materials, 2014, 195: 50–59
https://doi.org/10.1016/j.micromeso.2014.04.016
27 H Wu , Y S Chua , V Krungleviciute , M Tyagi , P Chen , T Yildirim , W Zhou . Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532
https://doi.org/10.1021/ja404514r
28 B Zornoza , A Martinez-Joaristi , P Serra-Crespo , C Tellez , J Coronas , J Gascon , F Kapteijn . Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47(33): 9522–9524
https://doi.org/10.1039/c1cc13431k
29 L M Robeson . The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
30 R Swaidan , B Ghanem , I Pinnau . Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Letters, 2015, 4(9): 947–951
https://doi.org/10.1021/acsmacrolett.5b00512
31 F Cacho-Bailo , M Etxeberría-Benavides , O Karvan , C Téllez , J Coronas . Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: application to gas separation membranes. CrystEngComm, 2017, 19(11): 1545–1554
https://doi.org/10.1039/C7CE00086C
32 S Chai , H Du , Y Zhao , Y Lin , C Kong , L Chen . Fabrication of highly selective organosilica membrane for gas separation by mixing bis(triethoxysilyl)ethane with methyltriethoxysilane. Separation and Purification Technology, 2019, 222: 162–167
https://doi.org/10.1016/j.seppur.2019.04.039
33 Y Fan , J Li , S Wang , X Meng , Y Jin , N Yang , B Meng , J Li , S Liu . Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15(4): 882–891
https://doi.org/10.1007/s11705-020-1990-1
34 B Ghalei , K Sakurai , Y Kinoshita , K Wakimoto , A P Isfahani , Q Song , K Doitomi , S Furukawa , H Hirao , H Kusuda . et al.. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2(7): 17086
https://doi.org/10.1038/nenergy.2017.86
35 J Y Li , Y T Lin , D K Wang , H H Tseng , M Y Wey . Effect of heat diffusivity for driving chain stitching of dual-type hybrid organosilica-derived membranes. Separation and Purification Technology, 2022, 290: 120848
https://doi.org/10.1016/j.seppur.2022.120848
36 Y Li , C Ma , P Nian , H Liu , X Zhang . Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. Journal of Membrane Science, 2019, 581: 344–354
https://doi.org/10.1016/j.memsci.2019.03.069
37 X Ma , Z Wan , Y Li , X He , J Caro , A Huang . Anisotropic gas separation in oriented ZIF-95 membranes prepared by vapor-assisted in-plane epitaxial growth. Angewandte Chemie International Edition, 2020, 59(47): 20858–20862
https://doi.org/10.1002/anie.202008260
38 Y Mise , S J Ahn , A Takagaki , R Kikuchi , S T Oyama . Fabrication and evaluation of trimethylmethoxysilane (TMMOS)-derived membranes for gas separation. Membranes, 2019, 9(10): 123
https://doi.org/10.3390/membranes9100123
39 Y Wang , H Jin , Q Ma , K Mo , H Mao , A Feldhoff , X Cao , Y Li , F Pan , Z Jiang . A MOF glass membrane for gas separation. Angewandte Chemie International Edition, 2020, 59(11): 4365–4369
https://doi.org/10.1002/anie.201915807
40 T Eljaddi , J Bouillon , D Roizard , L Lebrun . Pebax-based composite membranes with high transport properties enhanced by ZIF-8 for CO2 separation. Membranes, 2022, 12(9): 836
https://doi.org/10.3390/membranes12090836
41 A Guo , Y Ban , K Yang , Y Zhou , N Cao , M Zhao , W Yang . Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. Journal of Membrane Science, 2020, 601: 117880
https://doi.org/10.1016/j.memsci.2020.117880
42 M Guo , M Kanezashi , H Nagasawa , L Yu , J Ohshita , T Tsuru . Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611: 118328
https://doi.org/10.1016/j.memsci.2020.118328
43 M Jia , X F Zhang , Y Feng , Y Zhou , J Yao . In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. Journal of Membrane Science, 2020, 595: 117579
https://doi.org/10.1016/j.memsci.2019.117579
44 Y Jiang , C Liu , J Caro , A Huang . A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274: 203–211
https://doi.org/10.1016/j.micromeso.2018.08.003
45 P Krokidas , M B M Spera , L G Boutsika , I Bratsos , G Charalambopoulou , I G Economou , T Steriotis . Nanoengineered ZIF fillers for mixed matrix membranes with enhanced CO2/CH4 selectivity. Separation and Purification Technology, 2023, 307: 122737
https://doi.org/10.1016/j.seppur.2022.122737
46 B Liu , D Li , J Yao , H Sun . Enhanced CO2 selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiO-66 particles. Journal of Applied Polymer Science, 2020, 137(36): 49068
https://doi.org/10.1002/app.49068
47 B Liu , Z Li , D Li , H Sun , J Yao . Polyzwitterion-grafted UiO-66-PEI incorporating polyimide membrane for high efficiency CO2/CH4 separation. Separation and Purification Technology, 2021, 267: 118617
https://doi.org/10.1016/j.seppur.2021.118617
48 M S Maleh , A Raisi . Preparation of high performance mixed matrix membranes by one-pot synthesis of ZIF-8 nanoparticles into Pebax-2533 for CO2 separation. Chemical Engineering Research & Design, 2022, 186: 266–275
https://doi.org/10.1016/j.cherd.2022.08.009
[1] FCE-23062-OF-ZY_suppl_1 Download
[1] Ziyi Chu, Boyu Zhang, Zhenhua Wu, Jiaxu Zhang, Yiran Cheng, Xueying Wang, Jiafu Shi, Zhongyi Jiang. Dendrimer-induced synthesis of porous organosilica capsules for enzyme encapsulation[J]. Front. Chem. Sci. Eng., 2024, 18(4): 39-.
[2] Qiaoyan Zhou, Huan Liu, Yipeng Wang, Kangxin Xiao, Guangyan Yang, Hong Yao. Synthesis of porous carbon from orange peel waste for effective volatile organic compounds adsorption: role of typical components[J]. Front. Chem. Sci. Eng., 2023, 17(7): 942-953.
[3] Zhixing Zhao, Bailing Tang, Xiaosheng Yan, Xin Wu, Zhao Li, Philip A. Gale, Yun-Bao Jiang. Crown ether-thiourea conjugates as ion transporters[J]. Front. Chem. Sci. Eng., 2022, 16(1): 81-91.
[4] Xianhui Li, Sheng Tan, Jianquan Luo, Manuel Pinelo. Nanofiltration for separation and purification of saccharides from biomass[J]. Front. Chem. Sci. Eng., 2021, 15(4): 837-853.
[5] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[6] Harinarayanan Puliyalil,Petr Slobodian,Michal Sedlacik,Ruhan Benlikaya,Pavel Riha,Kostya (Ken) Ostrikov,Uroš Cvelbar. Plasma-enabled sensing of urea and related amides on polyaniline[J]. Front. Chem. Sci. Eng., 2016, 10(2): 265-272.
[7] Hualiang AN, Xinqiang ZHAO, Zhiguang JIA, Changcheng WU, Yanji WANG. Synthesis of magnetic Pb/Fe3O4/SiO2 and its catalytic activity for propylene carbonate synthesis via urea and 1,2-propylene glycol[J]. Front Chem Eng Chin, 2009, 3(2): 215-218.
[8] WANG Feng, ZHAO Ning, LI Junping, XIAO Fukui, WEI Wei, SUN Yuhan. Non-equilibrium model for catalytic distillation process [J]. Front. Chem. Sci. Eng., 2008, 2(4): 379-384.
[9] ZHAO Qian, WANG Shirong, LI Xianggao, HE Lili. Synthesis and photoconductivities of bisazo charge generation materials[J]. Front. Chem. Sci. Eng., 2008, 2(3): 330-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed