Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (7) : 79    https://doi.org/10.1007/s11705-024-2434-0
Single-atom catalysis: a promising avenue for precisely controlling reaction pathways
Xiaobo Yang, Xuning Li(), Yanqiang Huang()
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
 Download: PDF(2854 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single-atom catalysts (SACs), characterized by exceptionally high atom efficiency, have garnered significant attention across various catalytic reactions. Recent studies have showcased SACs with robust capabilities for precise catalysis, specifically targeting reactions along designated pathways. This review focuses on the advances in the precise activation and reconstruction of chemical bonds on SACs, including precise activation of C–O and C–H bonds and selective couplings involving C–C and C–N bonds. Our discussion begins with a thorough exploration of the factors that render SACs skilled in precise catalytic processes, encompassing the narrow d-band electronic state of single atom site resulting in the adsorption tendency, isolate site resulting in unique adsorption structure, and synergy effect of a single atom site with its neighbors. Subsequently, we elaborate on the applications of SACs in electrocatalysis and thermocatalysis including four prominent reactions, namely, electrochemical CO2 reduction, urea electrochemical synthesis, CO2 hydrogenation, and CH4 activation. Then the concept of rational design of SACs for precisely controlling reaction pathways is discussed from the aspects of pore structure design, support-metal strong interaction, and support hydrophilic/hydrophobic. Finally, we summarize the challenges encountered by SACs in the field of precise catalytic processes and outline prospects for their further development in this domain.

Keywords single atom catalysts      selective oxidation      CO2RR      bond coupling     
Corresponding Author(s): Xuning Li,Yanqiang Huang   
Just Accepted Date: 19 April 2024   Issue Date: 18 June 2024
 Cite this article:   
Xiaobo Yang,Xuning Li,Yanqiang Huang. Single-atom catalysis: a promising avenue for precisely controlling reaction pathways[J]. Front. Chem. Sci. Eng., 2024, 18(7): 79.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2434-0
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I7/79
Fig.1  The schematic of the importance of catalysis in current green synthesis.
Fig.2  The schematic of physicochemical property changes from nanocatalyst to single atom catalyst.
Fig.3  (a) The electronic structure change from bulk catalyst to SAC. Reprinted with permission from Ref. [59], copyright 2019, American Chemical Society. (b) The interaction model between broad s and narrow d band of metal toward orbital of adsorbate, and a simplified interaction model of narrow/wide metal band orbital and molecular orbital of the adsorbate. (c) The calculated d-band structure of Cu atom on AgCu1 SAA (single-atom alloy, left) and bulk Cu (right). (d, e) The schematic diagram of adsorbed structures of schizolytic CH3O* on (d) Cu (111) and (e) AgCu1 SAA (111) surface. Reprinted with permission from Ref. [61], copyright 2018, Springer Nature.
Fig.4  (a) The schematic diagram of different structures (C=O species-left and C=C species-right) of crotonaldehyde adsorbed on SAA. (b) The adsorption tendency of crotonaldehyde on different SAAs and the differences in d-band interaction energy (z-axis) are affected by the d-band center value (y-axis) and width (HWHM, x-axis). (c) The density of state of crotonaldehyde adsorbed on AuFe1 and AuPt1 SAA with different adsorb models. Reprinted with permission from Ref. [63], copyright 2021, American Chemical Society.
Fig.5  (a) The schematic diagram of O2 adsorbed on SAC and metal catalyst. (b) The schematic of H2 oxidation on TiO2 supported Pd single atom. Reprinted with permission from Ref. [65], copyright 2022, Springer Nature. (c, d) The HCOOH oxidation path and structure of intermediates on (c) Ir nanocluster, and (d) Ir-N4-C catalyst. Reprinted with permission from Ref. [70], copyright 2020, Springer Nature.
Fig.6  (a) The scaling relation of reaction energy (x-axis) and activation energy (y-axis) on the nano metal catalyst and SAA (left), and the structure change of CH4 dehydrogenation to CH3* + H* on SAA (right). Reprinted with permission from Ref. [64], copyright 2018, American Chemical Society. (b) The structure schematic of intermediates and (c) free energy change of CH3OH dehydrogenation on metal and SAA surface. Reprinted with permission from Ref. [72], copyright 2023, American Chemical Society.
Fig.7  (a) The adsorption energy of CO2 on Ni-Co dual atom, Co single atom, and Ni SACs. (b) C–C bond coupling energy on Ni-Co dual atom, Co single atom, and Ni SACs. (c) The CO reduction free energy profile on Ni-Co dual atom catalyst. Reprinted with permission from Ref. [81], copyright 2024, John Wiley and Sons. (d) Hydrohalogenation energy barrier on different Pd sites. Reprinted with permission from Ref. [82], copyright 2021, Springer Nature. (e) The atom structure changes during HOR process on Ir-P atom pair. Reprinted with permission from Ref. [58], copyright 2023, Springer Nature. (f) Chemoselective hydrogenation of nitroarenes on Ni (111) and RuNi (111). Reprinted with permission from Ref. [85], copyright 2022, Springer Nature.
Fig.8  (a) The electronic structure of Ni(I)N4 site and the corresponding CO2 activation mechanism. (b) The CO2RR product selectivity of four different Ni-based SACs. Reprinted with permission from Ref. [89], copyright 2018, Springer Nature. (c) The adsorption structure and energy of CO2 on Sn(II)Pc and O-Sn(IV)Pc catalysts. (d) The CO2RR process on O-Sn(IV)Pc catalyst. Reprinted with permission from Ref. [90], copyright 2023, American Chemical Society.
Fig.9  (a) The FE of urea on Fe single atom, Ni single atom, Fe/Ni dual single atom, as well as FeNi dual catalysts. (b) The summarize of CO2RR and NO3RR and co-reduction performance of Ni single, Fe single, and FeNi dual atom catalysts. Reprinted with permission from Ref. [96], copyright 2022, Springer Nature. (c) The performance of urea yield of CuM alloy with different M amounts (M = Bi, Sn, Sb). Reprinted with permission from Ref. [97], copyright 2023, John Wiley and Sons. (d) The schematic of N2 and CO2 co-reduction on M2N6 dual atom catalysts. Reprinted with permission from Ref. [99], copyright 2023, John Wiley and Sons. (e) The free energy profile and structure of N2-CO coupling on ZnMn dual atom catalyst. (f) The FE of urea on the different potential of ZnMn dual atom catalyst. Reprinted with permission from Ref. [100], copyright 2023, John Wiley and Sons.
Fig.10  (a) The reaction process and free energy diagram of CO2 hydrogenation to HCOOH on Ir single atom site. Reprinted with permission from Ref. [106], copyright 2019, Springer Nature. (b) The reaction path and free energy barrier of CO2 hydrogen to CH3OH/CO on Cu-N4/N3 catalysts. Reprinted with permission from Ref. [107], 2021, copyright Springer Nature. (c) The electron distribution of Ir-In2O3 and In2O3 catalysts as well as corresponding free energy diagram of CO2 hydrogenation to CO. (d) The product selectivity of CO2 hydrogenation to ethanol on different Ir-In2O3 catalysts. Reprinted with permission from Ref. [109], copyright 2019, Springer Nature.
Fig.11  (a) The product yield and (b) the TOF values of different Ru-UiO-66 catalysts with different Ru state during CH4 conversion. (c) The model structure of Zr and Ru site during CH4 activation and corresponding free energy barriers. (d) The free energy barriers of formation of ?OOH and O2 on Zr oxo–?OH* and Ru1=O* sites. Reprinted with permission from Ref. [115], copyright 2023, American Chemical Society.
Fig.12  (a) The schematic diagram of CO2 reduction to CH3OH on CoPc catalyst supported on single wall carbon nano tube with tensile strain and plane support with no strain. Reprinted with permission from Ref. [121], copyright 2023, Springer Nature. (b) The relation between energies of dissociative adsorption of H2 on Sv of strained films and MoS2 nanotubes. (c) The free energy diagram of CO2 hydrogenation to CH3OH on Cu1-MoS2 with tensile and compressive strain. (d) The free energy diagram of O hydrogenation on Cu1-MoS2 with tensile and compressive strain. Reprinted with permission from Ref. [122], copyright 2023, Springer Nature. (e) The schematic diagram of metal support interaction of Pt single atom and Pt nanoparticle toward TiO2 support at different temperatures. Reprinted with permission from Ref. [125], copyright 2020, John Wiley and Sons.
Fig.13  Schematic perspective of synthesis, mechanism investigation, and applications amplification of SACs.
1 X Liu , L Dai . Carbon-based metal-free catalysts. Nature Reviews. Materials, 2016, 1(11): 16064
https://doi.org/10.1038/natrevmats.2016.64
2 F Meirer , B M Weckhuysen . Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nature Reviews. Materials, 2018, 3(9): 324–340
https://doi.org/10.1038/s41578-018-0044-5
3 S Mitchell , Ramírez J Pérez . Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews. Materials, 2021, 6(11): 969–985
https://doi.org/10.1038/s41578-021-00360-6
4 Z J Zhao , S Liu , S Zha , D Cheng , F Studt , G Henkelman , J Gong . Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nature Reviews. Materials, 2019, 4(12): 792–804
https://doi.org/10.1038/s41578-019-0152-x
5 B H R Suryanto , K Matuszek , J Choi , R Y Hodgetts , H L Du , J M Bakker , C S M Kang , P V Cherepanov , A N Simonov , D R MacFarlane . Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372(6547): 1187–1191
https://doi.org/10.1126/science.abg2371
6 G F Chen , Y Yuan , H Jiang , S Y Ren , L X Ding , L Ma , T Wu , J Lu , H Wang . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605–613
https://doi.org/10.1038/s41560-020-0654-1
7 F Chang , I Tezsevin , J W de Rijk , J D Meeldijk , J P Hofmann , S Er , P Ngene , P E de Jongh . Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5(3): 222–230
https://doi.org/10.1038/s41929-022-00754-x
8 X Pan , F Jiao , D Miao , X Bao . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
https://doi.org/10.1021/acs.chemrev.0c01012
9 M Rahmati , M S Safdari , T H Fletcher , M D Argyle , C H Bartholomew . Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during Fischer-Tropsch synthesis. Chemical Reviews, 2020, 120(10): 4455–4533
https://doi.org/10.1021/acs.chemrev.9b00417
10 K T Rommens , M Saeys . Molecular views on Fischer-Tropsch synthesis. Chemical Reviews, 2023, 123(9): 5798–5858
https://doi.org/10.1021/acs.chemrev.2c00508
11 R F Service . Lithium-ion battery development takes nobel. Science, 2019, 366(6463): 292
https://doi.org/10.1126/science.366.6463.292
12 F Degen , M Winter , D Bendig , J Tübke . Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 2023, 8(11): 1284–1295
https://doi.org/10.1038/s41560-023-01355-z
13 W E Gent , G M Busse , K Z House . The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7(12): 1132–1143
https://doi.org/10.1038/s41560-022-01129-z
14 X Feng , D Ren , X He , M Ouyang . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4): 743–770
https://doi.org/10.1016/j.joule.2020.02.010
15 G Harper , R Sommerville , E Kendrick , L Driscoll , P Slater , R Stolkin , A Walton , P Christensen , O Heidrich , S Lambert . et al.. Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575(7781): 75–86
https://doi.org/10.1038/s41586-019-1682-5
16 L D Chen . Cations play an essential role in CO2 reduction. Nature Catalysis, 2021, 4(8): 641–642
https://doi.org/10.1038/s41929-021-00667-1
17 B Yan , Y Li , W Cao , Z Zeng , P Liu , Z Ke , G Yang . Highly efficient and highly selective CO2 reduction to CO driven by laser. Joule, 2022, 6(12): 2735–2744
https://doi.org/10.1016/j.joule.2022.11.005
18 W Kang , C C Lee , A J Jasniewski , M W Ribbe , Y Hu . Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science, 2020, 368(6497): 1381–1385
https://doi.org/10.1126/science.aaz6748
19 N S Weliwatte , S D Minteer . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
https://doi.org/10.1016/j.joule.2021.08.003
20 X Yu , P Han , Z Wei , L Huang , Z Gu , S Peng , J Ma , G Zheng . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
https://doi.org/10.1016/j.joule.2018.06.007
21 G Qing , R Ghazfar , S T Jackowski , F Habibzadeh , M M Ashtiani , C P Chen , M R III Smith , T W Hamann . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
https://doi.org/10.1021/acs.chemrev.9b00659
22 K Tanifuji , Y Ohki . Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chemical Reviews, 2020, 120(12): 5194–5251
https://doi.org/10.1021/acs.chemrev.9b00544
23 I E L Stephens , J Rossmeisl , I Chorkendorff . Toward sustainable fuel cells. Science, 2016, 354(6318): 1378–1379
https://doi.org/10.1126/science.aal3303
24 C S Gittleman , H Jia , E S De Castro , C R I Chisholm , Y S Kim . Proton conductors for heavy-duty vehicle fuel cells. Joule, 2021, 5(7): 1660–1677
https://doi.org/10.1016/j.joule.2021.05.016
25 Z Zhou , Y Zhang , Y Shen , S Liu , Y Zhang . Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47(7): 2298–2321
https://doi.org/10.1039/C7CS00840F
26 Y Feng , S Long , X Tang , Y Sun , R Luque , X Zeng , L Lin . Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50(10): 6042–6093
https://doi.org/10.1039/D0CS01601B
27 P Sudarsanam , E Peeters , E V Makshina , V I Parvulescu , B F Sels . Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48(8): 2366–2421
https://doi.org/10.1039/C8CS00452H
28 R Fang , A Dhakshinamoorthy , Y Li , H Garcia . Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49(11): 3638–3687
https://doi.org/10.1039/D0CS00070A
29 J D Rimer . Rational design of zeolite catalysts. Nature Catalysis, 2018, 1(7): 488–489
https://doi.org/10.1038/s41929-018-0114-5
30 D Xu , S N Zhang , J S Chen , X H Li . Design of the synergistic rectifying interfaces in Mott-Schottky catalysts. Chemical Reviews, 2023, 123(1): 1–30
https://doi.org/10.1021/acs.chemrev.2c00426
31 D J Durand , N Fey . Computational ligand descriptors for catalyst design. Chemical Reviews, 2019, 119(11): 6561–6594
https://doi.org/10.1021/acs.chemrev.8b00588
32 A H Motagamwala , J A Dumesic . Microkinetic modeling: a tool for rational catalyst design. Chemical Reviews, 2021, 121(2): 1049–1076
https://doi.org/10.1021/acs.chemrev.0c00394
33 D Su , Z Lam , Y Wang , F Han , M Zhang , B Liu , H Chen . Ultralong durability of ethanol oxidation reaction via morphological design. Joule, 2023, 7(11): 2568–2582
https://doi.org/10.1016/j.joule.2023.09.008
34 L Wang , S Meng , C Tang , C Zhan , S Geng , K Jiang , X Huang , L Bu . PtNi/PtIn-skin fishbone-like nanowires boost alkaline hydrogen oxidation catalysis. ACS Nano, 2023, 17(18): 17779–17789
https://doi.org/10.1021/acsnano.3c02832
35 R Mehmood , W Fan , X Hu , J Li , P Liu , Y Zhang , Z Zhou , J Wang , M Liu , F Zhang . Confirming high-valent iron as highly active species of water oxidation on the Fe, V-coupled bimetallic electrocatalyst: in situ analysis of X-ray absorption and mössbauer spectroscopy. Journal of the American Chemical Society, 2023, 145(22): 12206–12213
https://doi.org/10.1021/jacs.3c02288
36 S Das , Ramírez J Pérez , J Gong , N Dewangan , K Hidajat , B C Gates , S Kawi . Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004
https://doi.org/10.1039/C9CS00713J
37 E K Rideal . Prof. Paul Sabatier, For. Mem.R.S. Nature, 1941, 148(3750): 309
38 T H Tan , B Xie , Y H Ng , S F B Abdullah , H Y M Tang , N Bedford , R A Taylor , K F Aguey Zinsou , R Amal , J Scott . Unlocking the potential of the formate pathway in the photo-assisted sabatier reaction. Nature Catalysis, 2020, 3(12): 1034–1043
https://doi.org/10.1038/s41929-020-00544-3
39 S Hu , W X Li . Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science, 2021, 374(6573): 1360–1365
https://doi.org/10.1126/science.abi9828
40 Y Zhou , F Wei , H Qi , Y Chai , L Cao , J Lin , Q Wan , X Liu , Y Xing , S Lin . et al.. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nature Catalysis, 2022, 5(12): 1145–1156
https://doi.org/10.1038/s41929-022-00885-1
41 B Qiao , A Wang , X Yang , L F Allard , Z Jiang , Y Cui , J Liu , J Li , T Zhang . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641
https://doi.org/10.1038/nchem.1095
42 X F Yang , A Wang , B Qiao , J Li , J Liu , T Zhang . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
https://doi.org/10.1021/ar300361m
43 L Liu , A Corma . Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079
https://doi.org/10.1021/acs.chemrev.7b00776
44 Y Zhang . Heterogeneous catalysis: single atoms on a roll. Nature Reviews Chemistry, 2018, 2(1): 0151
45 X Wu , Q Wang , S Yang , J Zhang , Y Cheng , H Tang , L Ma , X Min , C Tang , S P Jiang . et al.. Sublayer-enhanced atomic sites of single atom catalysts through in situ atomization of metal oxide nanoparticles. Energy & Environmental Science, 2022, 15(3): 1183–1191
https://doi.org/10.1039/D1EE03311E
46 D Jiang , G Wan , Stenlid J Halldin , Vargas C E García , J Zhang , C Sun , J Li , Pedersen F Abild , C J Tassone , Y Wang . Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nature Catalysis, 2023, 6(7): 618–627
https://doi.org/10.1038/s41929-023-00983-8
47 N Agarwal , S J Freakley , R U McVicker , S M Althahban , N Dimitratos , Q He , D J Morgan , R L Jenkins , D J Willock , S H Taylor . et al.. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science, 2017, 358(6360): 223–227
https://doi.org/10.1126/science.aan6515
48 S Shoji , X Peng , A Yamaguchi , R Watanabe , C Fukuhara , Y Cho , T Yamamoto , S Matsumura , M W Yu , S Ishii . et al.. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nature Catalysis, 2020, 3(2): 148–153
https://doi.org/10.1038/s41929-019-0419-z
49 S Xu , E A Carter . Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669
https://doi.org/10.1021/acs.chemrev.8b00481
50 R Rizo , Ais R M Arán , E Padgett , D A Muller , M J Lázaro , Gullón J Solla , J M Feliu , E Pastor , H D Abruña . Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. Journal of the American Chemical Society, 2018, 140(10): 3791–3797
https://doi.org/10.1021/jacs.8b00588
51 X Yang , Z Liang , S Chen , M Ma , Q Wang , X Tong , Q Zhang , J Ye , L Gu , N Yang . A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small, 2020, 16(47): 2004727
https://doi.org/10.1002/smll.202004727
52 S Vijay , W Ju , S Brückner , S C Tsang , P Strasser , K Chan . Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4(12): 1024–1031
https://doi.org/10.1038/s41929-021-00705-y
53 Y Tang , Y Li , V Fung , D E Jiang , W Huang , S Zhang , Y Iwasawa , T Sakata , L Nguyen , X Zhang . et al.. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9(1): 1231
https://doi.org/10.1038/s41467-018-03235-7
54 P Xie , J Ding , Z Yao , T Pu , P Zhang , Z Huang , C Wang , J Zhang , N Zecher Freeman , H Zong . et al.. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nature Communications, 2022, 13(1): 1375
https://doi.org/10.1038/s41467-022-28987-1
55 Z Wang , S Liu , X Zhao , M Wang , L Zhang , T Qian , J Xiong , C Yang , C Yan . Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Materials Letters, 2023, 5(4): 1018–1026
https://doi.org/10.1021/acsmaterialslett.3c00007
56 J Ding , Z Teng , X Su , K Kato , Y Liu , T Xiao , W Liu , L Liu , Q Zhang , X Ren . et al.. Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem, 2023, 9(4): 1017–1035
https://doi.org/10.1016/j.chempr.2023.02.011
57 J Ding , Z Wei , F Li , J Zhang , Q Zhang , J Zhou , W Wang , Y Liu , Z Zhang , X Su . et al.. Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nature Communications, 2023, 14(1): 6550
https://doi.org/10.1038/s41467-023-42307-1
58 Q Wang , H Wang , H Cao , C W Tung , W Liu , S F Hung , W Wang , C Zhu , Z Zhang , W Cai . et al.. Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nature Catalysis, 2023, 6(10): 916–926
https://doi.org/10.1038/s41929-023-01017-z
59 Y Wang , J Mao , X Meng , L Yu , D Deng , X Bao . Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chemical Reviews, 2019, 119(3): 1806–1854
https://doi.org/10.1021/acs.chemrev.8b00501
60 J K NørskovP Stoltze. Theoretical aspects of surface reactions. Surface Science, 1987, 189–190: 91–105
61 M T Greiner , T E Jones , S Beeg , L Zwiener , M Scherzer , F Girgsdies , S Piccinin , M Armbrüster , Gericke A Knop , R Schlögl . Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10(10): 1008–1015
https://doi.org/10.1038/s41557-018-0125-5
62 A S Rosen , S Vijay , K A Persson . Free-atom-like d states beyond the dilute limit of single-atom alloys. Chemical Science, 2023, 14(6): 1503–1511
https://doi.org/10.1039/D2SC05772G
63 T D Spivey , A Holewinski . Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. Journal of the American Chemical Society, 2021, 143(31): 11897–11902
https://doi.org/10.1021/jacs.1c04234
64 M T Darby , R Réocreux , E C H Sykes , A Michaelides , M Stamatakis . Elucidating the stability and reactivity of surface intermediates on single-atom alloy catalysts. ACS Catalysis, 2018, 8(6): 5038–5050
https://doi.org/10.1021/acscatal.8b00881
65 S Yu , X Cheng , Y Wang , B Xiao , Y Xing , J Ren , Y Lu , H Li , C Zhuang , G Chen . High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nature Communications, 2022, 13(1): 4737
https://doi.org/10.1038/s41467-022-32450-6
66 W Li , G Wu , W Hu , J Dang , C Wang , X Weng , I da Silva , P Manuel , S Yang , N Guan . et al.. Direct propylene epoxidation with molecular oxygen over cobalt-containing zeolites. Journal of the American Chemical Society, 2022, 144(9): 4260–4268
https://doi.org/10.1021/jacs.2c00792
67 B Qiao , J Liu , Y G Wang , Q Lin , X Liu , A Wang , J Li , T Zhang , J Liu . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
https://doi.org/10.1021/acscatal.5b01114
68 W Ma , J Mao , C T He , L Shao , J Liu , M Wang , P Yu , L Mao . Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science (Cambridge), 2022, 13(19): 5606–5615
https://doi.org/10.1039/D2SC01110G
69 Q Shang , N Tang , H Qi , S Chen , G Xu , C Wu , X Pan , X Wang , Y Cong . Cong Y. A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41(12): 1812–1817
https://doi.org/10.1016/S1872-2067(20)63651-8
70 Z Li , Y Chen , S Ji , Y Tang , W Chen , A Li , J Zhao , Y Xiong , Y Wu , Y Gong . et al.. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nature Chemistry, 2020, 12(8): 764–772
https://doi.org/10.1038/s41557-020-0473-9
71 Y Xiong , J Dong , Z Q Huang , P Xin , W Chen , Y Wang , Z Li , Z Jin , W Xing , Z Zhuang . et al.. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390–397
https://doi.org/10.1038/s41565-020-0665-x
72 W Li , S E Madan , R Réocreux , M Stamatakis . Elucidating the reactivity of oxygenates on single-atom alloy catalysts. ACS Catalysis, 2023, 13(24): 15851–15868
https://doi.org/10.1021/acscatal.3c03954
73 W Ni , J L Meibom , N U Hassan , M Chang , Y C Chu , A Krammer , S Sun , Y Zheng , L Bai , W Ma . et al.. Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nature Catalysis, 2023, 6(9): 773–783
https://doi.org/10.1038/s41929-023-01007-1
74 G Meng , W Lan , L Zhang , S Wang , T Zhang , S Zhang , M Xu , Y Wang , J Zhang , F Yue . et al.. Synergy of single atoms and lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. Journal of the American Chemical Society, 2023, 145(23): 12884–12893
https://doi.org/10.1021/jacs.3c04028
75 C Dong , Z Gao , Y Li , M Peng , M Wang , Y Xu , C Li , M Xu , Y Deng , X Qin . et al.. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nature Catalysis, 2022, 5(6): 485–493
https://doi.org/10.1038/s41929-022-00769-4
76 N Fu , X Liang , X Wang , T Gan , C Ye , Z Li , J C Liu , Y Li . Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. Journal of the American Chemical Society, 2023, 145(17): 9540–9547
https://doi.org/10.1021/jacs.2c11739
77 Y Fang , Q Zhang , H Zhang , X Li , W Chen , J Xu , H Shen , J Yang , C Pan , Y Zhu . et al.. Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angewandte Chemie International Edition, 2022, 61(48): e202212273
https://doi.org/10.1002/anie.202212273
78 H Niu , Z Zhang , X Wang , X Wan , C Shao , Y Guo . Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials, 2021, 31(11): 2008533
https://doi.org/10.1002/adfm.202008533
79 J Leverett , T Tran Phu , J A Yuwono , P Kumar , C Kim , Q Zhai , C Han , J Qu , J Cairney , A N Simonov . et al.. Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3– to urea. Advanced Energy Materials, 2022, 12(32): 2201500
https://doi.org/10.1002/aenm.202201500
80 W Yang , F Polo Garzon , H Zhou , Z Huang , M Chi , H III Meyer , X Yu , Y Li , Z Wu . Boosting the activity of Pd single atoms by tuning their local environment on ceria for methane combustion. Angewandte Chemie International Edition, 2023, 62(5): e202217323
https://doi.org/10.1002/anie.202217323
81 G Jia , M Sun , Y Wang , Y Shi , L Zhang , X Cui , B Huang , J C Yu . Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Advanced Functional Materials, 2022, 32(41): 2206817
https://doi.org/10.1002/adfm.202206817
82 C Chu , D Huang , S Gupta , S Weon , J Niu , E Stavitski , C Muhich , J H Kim . Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12(1): 5179
https://doi.org/10.1038/s41467-021-25526-2
83 P Liu , X Huang , D Mance , C Copéret . Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene-ethylene coupling towards styrene. Nature Catalysis, 2021, 4(11): 968–975
https://doi.org/10.1038/s41929-021-00700-3
84 I Ro , J Qi , S Lee , M Xu , X Yan , Z Xie , G Zakem , A Morales , J G Chen , X Pan . et al.. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature, 2022, 609(7926): 287–292
https://doi.org/10.1038/s41586-022-05075-4
85 W Liu , H Feng , Y Yang , Y Niu , L Wang , P Yin , S Hong , B Zhang , X Zhang , M Wei . Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13(1): 3188
https://doi.org/10.1038/s41467-022-30536-9
86 H Cao , Z Zhang , J W Chen , Y G Wang . Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catalysis, 2022, 12(11): 6606–6617
https://doi.org/10.1021/acscatal.2c01470
87 J Li , H Zeng , X Dong , Y Ding , S Hu , R Zhang , Y Dai , P Cui , Z Xiao , D Zhao . et al.. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nature Communications, 2023, 14(1): 340
https://doi.org/10.1038/s41467-023-35960-z
88 M Zhang , Z Zhang , Z Zhao , H Huang , D H Anjum , D Wang , J He , K W Huang . He J h, Huang K W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: elucidating the roles of Cu and Sn. ACS Catalysis, 2021, 11(17): 11103–11108
https://doi.org/10.1021/acscatal.1c02556
89 H B Yang , S F Hung , S Liu , K Yuan , S Miao , L Zhang , X Huang , H Y Wang , W Cai , R Chen . et al.. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147
https://doi.org/10.1038/s41560-017-0078-8
90 Y Deng , J Zhao , S Wang , R Chen , J Ding , H J Tsai , W J Zeng , S F Hung , W Xu , J Wang . et al.. Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. Journal of the American Chemical Society, 2023, 145(13): 7242–7251
https://doi.org/10.1021/jacs.2c12952
91 J Ding , H Bin Yang , X L Ma , S Liu , W Liu , Q Mao , Y Huang , J Li , T Zhang , B Liu . A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nature Energy, 2023, 8(12): 1386–1394
https://doi.org/10.1038/s41560-023-01389-3
92 X Zheng , Luna P De , de Arquer F P García , B Zhang , N Becknell , M B Ross , Y Li , M N Banis , Y Li , M Liu . et al.. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1(4): 794–805
https://doi.org/10.1016/j.joule.2017.09.014
93 W Li , L Li , Q Xia , S Hong , L Wang , Z Yao , T S Wu , Y L Soo , H Zhang , T W B Lo . et al.. Lowering C–C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Applied Catalysis B: Environmental, 2022, 318: 121823
https://doi.org/10.1016/j.apcatb.2022.121823
94 Y Cao , S Chen , S Bo , W Fan , J Li , C Jia , Z Zhou , Q Liu , L Zheng , F Zhang . Single atom Bi decorated copper alloy enables C–C coupling for electrocatalytic reduction of CO2 into C2+ products**. Angewandte Chemie International Edition, 2023, 62(30): e202303048
https://doi.org/10.1002/anie.202303048
95 M Jiang , M Zhu , M Wang , Y He , X Luo , C Wu , L Zhang , Z Jin . Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano, 2023, 17(4): 3209–3224
https://doi.org/10.1021/acsnano.2c11046
96 X Zhang , X Zhu , S Bo , C Chen , M Qiu , X Wei , N He , C Xie , W Chen , J Zheng . et al.. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nature Communications, 2022, 13(1): 5337
https://doi.org/10.1038/s41467-022-33066-6
97 Y LiuX TuX WeiD WangX ZhangW ChenC ChenS Wang. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angewandte Chemie International Edition, 2023, 62(19): e202300387
98 J Li , Y Zhang , K Kuruvinashetti , N Kornienko . Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nature Reviews. Chemistry, 2022, 6(5): 303–319
https://doi.org/10.1038/s41570-022-00379-5
99 J Liu , S C Smith , Y Gu , L Kou . C–N coupling enabled by N–N bond breaking for electrochemical urea production. Advanced Functional Materials, 2023, 33(47): 2305894
https://doi.org/10.1002/adfm.202305894
100 X Zhang , X Zhu , S Bo , C Chen , K Cheng , J Zheng , S Li , X Tu , W Chen , C Xie . et al.. Electrocatalytic urea synthesis with 63.5% faradaic efficiency and 100% N-selectivity via one-step C–N coupling. Angewandte Chemie International Edition, 2023, 62(33): e202305447
https://doi.org/10.1002/anie.202305447
101 L Chen , S I Allec , M T Nguyen , L Kovarik , A S Hoffman , J Hong , D Meira , H Shi , S R Bare , V A Glezakou . et al.. Dynamic evolution of palladium single atoms on anatase titania support determines the reverse water-gas shift activity. Journal of the American Chemical Society, 2023, 145(19): 10847–10860
https://doi.org/10.1021/jacs.3c02326
102 M M Millet , Siller G Algara , S Wrabetz , A Mazheika , F Girgsdies , D Teschner , F Seitz , A Tarasov , S V Levchenko , R Schlögl . et al.. Ni single atom catalysts for CO2 activation. Journal of the American Chemical Society, 2019, 141(6): 2451–2461
https://doi.org/10.1021/jacs.8b11729
103 P Du , R Qi , Y Zhang , Q Gu , X Xu , Y Tan , X Liu , A Wang , B Zhu , B Yang . et al.. Single-atom-driven dynamic carburization over Pd1-FeOx catalyst boosting CO2 conversion. Chem, 2022, 8(12): 3252–3262
https://doi.org/10.1016/j.chempr.2022.08.012
104 B Yang , Y Wang , B Gao , L Zhang , L Guo . Size-dependent active site and its catalytic mechanism for CO2 hydrogenation reactivity and selectivity over Re/TiO2. ACS Catalysis, 2023, 13(15): 10364–10374
https://doi.org/10.1021/acscatal.3c01735
105 D Wang , Z Yuan , X Wu , W Xiong , J Ding , Z Zhang , W Huang . Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO. ACS Catalysis, 2023, 13(10): 7132–7138
https://doi.org/10.1021/acscatal.3c00767
106 X Shao , X Yang , J Xu , S Liu , S Miao , X Liu , X Su , H Duan , Y Huang , T Zhang . Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693–705
https://doi.org/10.1016/j.chempr.2018.12.014
107 T Yang , X Mao , Y Zhang , X Wu , L Wang , M Chu , C W Pao , S Yang , Y Xu , X Huang . Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12(1): 6022
https://doi.org/10.1038/s41467-021-26316-6
108 Y Chen , H Li , W Zhao , W Zhang , J Li , W Li , X Zheng , W Yan , W Zhang , J Zhu . et al.. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nature Communications, 2019, 10(1): 1885
https://doi.org/10.1038/s41467-019-09918-z
109 X Ye , C Yang , X Pan , J Ma , Y Zhang , Y Ren , X Liu , L Li , Y Huang . Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. Journal of the American Chemical Society, 2020, 142(45): 19001–19005
https://doi.org/10.1021/jacs.0c08607
110 K Zheng , Y Li , B Liu , F Jiang , Y Xu , X Liu . Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol. Angewandte Chemie International Edition, 2022, 61(44): e202210991
https://doi.org/10.1002/anie.202210991
111 T Z H Gani , H J Kulik . Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by Fe(IV)=O. ACS Catalysis, 2018, 8(2): 975–986
https://doi.org/10.1021/acscatal.7b03597
112 P Schwach , X Pan , X Bao . Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chemical Reviews, 2017, 117(13): 8497–8520
https://doi.org/10.1021/acs.chemrev.6b00715
113 X Tang , L Wang , B Yang , C Fei , T Yao , W Liu , Y Lou , Q Dai , Y Cai , X M Cao . et al.. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285: 119827
https://doi.org/10.1016/j.apcatb.2020.119827
114 J Yang , Y Huang , H Qi , C Zeng , Q Jiang , Y Cui , Y Su , X Du , X Pan , X Liu . et al.. Modulating the strong metal-support interactian of single-atom catalysts via vicinal structure decoration. Nature Communications, 2022, 13(1): 4244
115 G Fang , F Wei , J Lin , Y Zhou , L Sun , X Shang , S Lin , X Wang . Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. Journal of the American Chemical Society, 2023, 145(24): 13169–13180
https://doi.org/10.1021/jacs.3c02121
116 S Grundner , M A C Markovits , G Li , M Tromp , E A Pidko , E J M Hensen , A Jentys , M Sanchez Sanchez , J A Lercher . Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6(1): 7546
https://doi.org/10.1038/ncomms8546
117 B Yu , L Cheng , S Dai , Y Jiang , B Yang , H Li , Y Zhao , J Xu , Y Zhang , C Pan . et al.. Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis. Advanced Science, 2023, 10(26): 2302143
https://doi.org/10.1002/advs.202302143
118 X Shen , D Wu , X Z Fu , J L Luo . Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chinese Chemical Letters, 2022, 33(1): 390–393
https://doi.org/10.1016/j.cclet.2021.07.019
119 Z Wang , Y Liu , H Zhang , X Zhou . Cubic platinum nanoparticles capped with Cs2[closo-B12H12] as an effective oxidation catalyst for converting methane to ethanol. Journal of Colloid and Interface Science, 2020, 566: 135–142
https://doi.org/10.1016/j.jcis.2020.01.047
120 Y Zhou , L Zhang , W Wang . Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10(1): 506
https://doi.org/10.1038/s41467-019-08454-0
121 J Su , C B III Musgrave , Y Song , L Huang , Y Liu , G Li , Y Xin , P Xiong , M M J Li , H Wu . et al.. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nature Catalysis, 2023, 6(9): 818–828
https://doi.org/10.1038/s41929-023-01005-3
122 S Zhou , W Ma , U Anjum , M Kosari , S Xi , S M Kozlov , H C Zeng . Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14(1): 5872
https://doi.org/10.1038/s41467-023-41362-y
123 M Shamzhy , M Opanasenko , P Concepción , A Martínez . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
https://doi.org/10.1039/C8CS00887F
124 X Deng , B Qin , R Liu , X Qin , W Dai , G Wu , N Guan , D Ma , L Li . Zeolite-eencaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. Journal of the American Chemical Society, 2021, 143(49): 20898–20906
https://doi.org/10.1021/jacs.1c09535
125 B Han , Y Guo , Y Huang , W Xi , J Xu , J Luo , H Qi , Y Ren , X Liu , B Qiao . et al.. Strong metal-support interactions between Pt single atoms and TiO2. Angewandte Chemie International Edition, 2020, 59(29): 11824–11829
https://doi.org/10.1002/anie.202003208
126 J Yang , W Li , D Wang , Y Li . Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300
https://doi.org/10.1002/adma.202003300
127 D Wakerley , S Lamaison , F Ozanam , N Menguy , D Mercier , P Marcus , M Fontecave , V Mougel . Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nature Materials, 2019, 18(11): 1222–1227
https://doi.org/10.1038/s41563-019-0445-x
128 X Li , C S Cao , S F Hung , Y R Lu , W Cai , A I Rykov , S Miao , S Xi , H Yang , Z Hu . et al.. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem, 2020, 6(12): 3440–3454
https://doi.org/10.1016/j.chempr.2020.10.027
129 X Ren , J Zhao , X Li , J Shao , B Pan , A Salamé , E Boutin , T Groizard , S Wang , J Ding . et al.. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nature Communications, 2023, 14(1): 3401
https://doi.org/10.1038/s41467-023-39153-6
[1] Lei Chen, Yuan Sun, Jinshan Chi, Wei Xiong, Pingle Liu, Fang Hao. Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation[J]. Front. Chem. Sci. Eng., 2024, 18(3): 33-.
[2] Shangjun Fu, Kuiyi You, Zhenpan Chen, Taobo Liu, Qiong Wang, Fangfang Zhao, Qiuhong Ai, Pingle Liu, He’an Luo. Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1211-1223.
[3] Feng Cheng, Dongwen Guo, Jinhua Lai, Meihui Long, Wenguang Zhao, Xianxiang Liu, Dulin Yin. Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent[J]. Front. Chem. Sci. Eng., 2021, 15(4): 960-968.
[4] Yanxia Zheng,Heng Zhang,Lei Wang,Suojiang Zhang,Shaojun Wang. Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid[J]. Front. Chem. Sci. Eng., 2016, 10(1): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed