Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (3) : 33    https://doi.org/10.1007/s11705-024-2395-3
Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation
Lei Chen, Yuan Sun, Jinshan Chi, Wei Xiong(), Pingle Liu, Fang Hao()
College of Chemical Engineering, National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
 Download: PDF(7422 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The selective oxidation of cyclohexane to cyclohexanone and cyclohexanol (KA oil) is a challenging issue in the chemical industry. At present the industrial conversion of cyclohexane to cyclohexanone and cyclohexanol is normally controlled at less than 5% selectivity. Thus, the development of highly active and stable catalysts for the aerobic oxidation of cyclohexane is necessary to overcome this low-efficiency process. Therefore, we have developed a cobalt-nitrogen co-doped porous sphere catalyst, Co-NC-x (x is the Zn/Co molar ratio, where x = 0, 0.5, 1, 2, and 4) by pyrolyzing resorcinol-formaldehyde resin microspheres. It achieved 88.28% cyclohexanone and cyclohexanol selectivity and a cyclohexane conversion of 8.88% under Co-NC-2. The results showed that the introduction of zinc effectively alleviated the aggregation of Co nanoparticles and optimized the structural properties of the material. In addition, Co0 and pyridinic-N are proposed to be the possible active species, and their proportion efficiently increased in the presence of Zn2+ species. In this study, we developed a novel strategy to design highly active catalysts for cyclohexane oxidation.

Keywords KA oil production      cyclohexane selective oxidation      cobalt-nitrogen co-doped porous carbon spheres      metal-organic framework     
Corresponding Author(s): Wei Xiong,Fang Hao   
Just Accepted Date: 28 December 2023   Issue Date: 07 February 2024
 Cite this article:   
Lei Chen,Yuan Sun,Jinshan Chi, et al. Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation[J]. Front. Chem. Sci. Eng., 2024, 18(3): 33.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2395-3
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I3/33
Fig.1  The preparation process of the Co-NC-x catalysts from its precursor RF@Zn-Co-ZIF-x.
Fig.2  XRD patterns of catalysts: (a) the different precursors of RF@Zn-Co-ZIF-x (at different Zn/Co ratios), and (b) their derived Co-NC-x catalysts.
Fig.3  Raman spectra of Co-NC-0, Co-NC-0.5, Co-NC-1, Co-NC-2 and Co-NC-4, respectively.
Fig.4  (a) N2 adsorption-desorption isotherms and (b) pore size distribution of different catalysts with different metal ratios in preparation of RF@Zn-Co-ZIF-x precursor.
Fig.5  SEM images of (a, b) RF resin microspheres, (c) RF@Zn-Co-ZIF-2, and (d) the Co-NC-2.
Fig.6  (a, b) TEM and (c) HRTEM, (d) HAADF-STEM image and (e–i) corresponding elemental EDS mapping images of the Co-NC-2.
Fig.7  XPS spectra of (a) Co 2p and (b) N 1s of Co-NC-0 and Co-NC-2.
CatalystCon./%Sel./%KA molar ratio
KACHHPAcidEster
Co-NC-28.8888.280.2210.910.590.69
Co-NC-2b)7.5688.920.769.560.760.63
Co-NC-2c)7.9885.111.879.033.980.61
Co-NC-2d)8.2685.001.768.624.610.67
Tab.1  The catalytic activity of the different catalysts in the liquid phase selective oxidation of cyclohexanea)
Fig.8  (a) Effects of Zn/Co molar ratios on the catalytic performance of Co-NC catalysts and (b) the effect of different pyrolysis temperatures on the catalytic performance of Co-NC-2. Reaction conditions: cyclohexane 15 g, catalyst 20 mg, reaction temperature = 155 °C, O2 pressure = 0.8 MPa, and reaction time = 90 min.
Fig.9  Effect of the reaction factors: (a) reaction temperature, (b) reaction time, (c) O2 pressure, and (d) the recyclability on the catalytic performance of Co-NC-2 in cyclohexane selective oxidation. Reaction conditions: cyclohexane 15 g, catalyst 20 mg; (a) O2 pressure = 0.8 MPa, reaction time = 90 min; (b) O2 pressure = 0.8 MPa, reaction temperature = 155 °C; (c) reaction temperature = 155 °C, reaction time = 90 min; (d) reaction temperature = 155 °C, O2 pressure = 0.8 MPa, reaction time = 90 min.
CHHP/eVQ=O/eVCy–OH/eVO–O bond/nm
Graphite-N?0.73?0.34?0.810.15
Pyridine-N?0.85?0.77?0.820.15
Pyrrolic-N?4.29?4.18?4.240.15
Co–N–C?1.18?1.07?1.370.15
Co4?5.48?1.77?1.280.33
Tab.2  The adsorption energies of CHHP, Q=O, Cy–OH on the models of different active sites
Fig.10  Potential energy diagrams for (a) the synthesis and (b) decomposition of the CHHP into cyclohexanone and (c) cyclohexanol on the different reaction active sites.
1 U Schuchardt , D Cardoso , R Sercheli , R Pereira , Cruz R S da , M C Guerreiro , D Mandelli , E V Spinacé , E L Pires . Cyclohexane oxidation continues to be a challenge. Applied Catalysis A, General, 2001, 211(1): 1–17
https://doi.org/10.1016/S0926-860X(01)00472-0
2 A K Suresh , M M Sharma , T Sridhar . Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Industrial & Engineering Chemistry Research, 2000, 39(11): 3958–3997
https://doi.org/10.1021/ie0002733
3 H Li , Y She , T Wang . Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane. Frontiers of Chemical Science and Engineering, 2012, 6(3): 356–368
https://doi.org/10.1007/s11705-012-0903-3
4 X H Li , J S Chen , X Wang , J Sun , M Antonietti . Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. Journal of the American Chemical Society, 2011, 133(21): 8074–8077
https://doi.org/10.1021/ja200997a
5 J Chen , M Chen , B Zhang , R Nie , A Huang , T W Goh , A Volkov , Z Zhang , Q Ren , W Huang . Allylic oxidation of olefins with a manganese-based metal-organic framework. Green Chemistry, 2019, 21(13): 3629–3636
https://doi.org/10.1039/C9GC01337G
6 X R Niu , J Li , L Zhang , Z T Lei , X L Zhao , C H Yang . ZSM-5 functionalized in situ with manganese ions for the catalytic oxidation of cyclohexane. RSC Advances, 2017, 7(80): 50619–50625
https://doi.org/10.1039/C7RA10771D
7 F Yao , L Xu , J Luo , X Li , Y An , C Wan . Biosynthesized Au/TiO2@SBA-15 catalysts for selective oxidation of cyclohexane with O2. Korean Journal of Chemical Engineering, 2018, 35(4): 853–858
https://doi.org/10.1007/s11814-018-0003-2
8 L Liu , R Arenal , D M Meira , A Corma . Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chemical Communications, 2019, 55(11): 1607–1610
https://doi.org/10.1039/C8CC07185C
9 Y Hong , Y Fang , X Zhou , G Du , J Mai , D Sun , Z Shao . Ionic liquid-modified Co/ZSM-5 catalyzed the aerobic oxidation of cyclohexane: toward improving the activity and selectivity. Industrial & Engineering Chemistry Research, 2019, 58(43): 19832–19838
https://doi.org/10.1021/acs.iecr.9b04100
10 X Guo , M Xu , M She , Y Zhu , T Shi , Z Chen , L Peng , X Guo , M Lin , W Ding . Morphology-reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane. Angewandte Chemie International Edition, 2020, 59(7): 2606–2611
https://doi.org/10.1002/anie.201911749
11 X Niu , Y Sun , Z Lei , G Qin , C Yang . Facile synthesis of hierarchical hollow Mn-ZSM-5 zeolite for enhanced cyclohexane catalytic oxidation. Progress in Natural Science, 2020, 30(1): 35–40
https://doi.org/10.1016/j.pnsc.2019.09.006
12 L Sun , J Liu , W Luo , Y Yang , F Wang , C Weerakkody , S L Suib . Preparation of amorphous copper-chromium oxides catalysts for selective oxidation of cyclohexane. Molecular Catalysis, 2018, 460: 16–26
https://doi.org/10.1016/j.mcat.2018.09.007
13 C Xie , W Wang , Y Yang , L Jiang , Y Chen , J He , J Wang . Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method. Molecular Catalysis, 2020, 495: 111134
https://doi.org/10.1016/j.mcat.2020.111134
14 E Muhumuza , P Wu , T Nan , L Zhao , P Bai , S Mintova , Z Yan . Perovskite-type LaCoO3 as an efficient and green catalyst for sustainable partial oxidation of cyclohexane. Industrial & Engineering Chemistry Research, 2020, 59(49): 21322–21332
https://doi.org/10.1021/acs.iecr.0c04095
15 Y Zhang , Z Yin , H Hui , H Wang , Y Li , G Liu , J Kang , Z Li , B B Mamba , J Li . Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. Journal of Catalysis, 2020, 387: 154–162
https://doi.org/10.1016/j.jcat.2020.04.023
16 A S Guimarães , B Schmitberger , A M Meireles , D C da S Martins , G DeFreitas-Silva . An eco-friendly approach to the cyclohexane oxidation catalyzed by manganese porphyrins: green and solvent-free systems. Polyhedron, 2019, 163: 144–152
https://doi.org/10.1016/j.poly.2019.02.022
17 X F Huang , G P Yuan , G Huang , S J Wei . Study on maximizing catalytic performance of cobalt(II) 5,10,15,20-tetrakis(4-pyridyl)porphyrin for cyclohexane oxidation. Journal of Industrial and Engineering Chemistry, 2019, 77: 135–145
https://doi.org/10.1016/j.jiec.2019.04.028
18 L Q Mo , X F Huang , G Huang , G P Yuan , S J Wei . Highly active catalysis of cobalt tetrakis(pentafluorophenyl)porphyrin promoted by chitosan for cyclohexane oxidation in response-surface-methodology-optimized reaction conditions. ChemistryOpen, 2019, 8(1): 104–113
https://doi.org/10.1002/open.201800268
19 A M Meireles , D C S Martins . Classical and green cyclohexane oxidation catalyzed by manganese porphyrins: ethanol as solvent and axial ligand. Polyhedron, 2020, 187: 114627
https://doi.org/10.1016/j.poly.2020.114627
20 Z Wang , Y Wu , C Wu , J Xie , X Gu , P Yu , M Zong , I D Gates , H Liu , J Rong . Electrophilic oxygen on defect-rich carbon nanotubes for selective oxidation of cyclohexane. Catalysis Science & Technology, 2020, 10(2): 332–336
https://doi.org/10.1039/C9CY02023C
21 Y Guo , T Ying , X Liu , B Shi , Y Wang . A partially graphitic carbon catalyst for aerobic oxidation of cyclohexane. Molecular Catalysis, 2019, 479: 110487
https://doi.org/10.1016/j.mcat.2019.110487
22 S Tang , Z Fu , Y Li , Y Li . Study on boron and fluorine-doped C3N4 as a solid activator for cyclohexane oxidation with H2O2 catalyzed by 8-quinolinolato iron(III) complexes under visible light irradiation. Applied Catalysis A: General, 2020, 590: 117342
https://doi.org/10.1016/j.apcata.2019.117342
23 D Shi , Z Ming , Q Wu , T Lai , K Zheng , C He , J Zhao . A novel photosensitizing decatungstate-based MOF: synthesis and photocatalytic oxidation of cyclohexane with molecular oxygen. Inorganic Chemistry Communications, 2019, 100: 125–128
https://doi.org/10.1016/j.inoche.2018.12.024
24 S Wang , Z Sun , X Zou , Z Zhang , G Fu , L Li , X Zhang , F Luo . Enhancing catalytic aerobic oxidation performance of cyclohexane: via size regulation of mixed-valence {V16} cluster-based metal-organic frameworks. New Journal of Chemistry, 2019, 43(36): 14527–14535
https://doi.org/10.1039/C9NJ03614H
25 H Wang , Y Zhang , L Zhang , Y Guo , S Liu , F Gao , Y Han , G Feng , X Liang , L Ge . Synthesis of C–N dual-doped Cr2O3 visible light-driven photocatalysts derived from metalorganic framework (MOF) for cyclohexane oxidation. RSC Advances, 2016, 6(88): 84871–84881
https://doi.org/10.1039/C6RA09908D
26 Y Fu , W Zhan , Y Guo , Y Guo , Y Wang , G Lu . Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane. Green Energy Environment, 2017, 2(2): 142–150
https://doi.org/10.1016/j.gee.2017.01.006
27 C Xu , L Jin , X Wang , Y Chen , L Dai . Honeycomb-like porous Ce–Cr oxide/N-doped carbon nanostructure: achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil. Carbon, 2020, 160: 287–297
https://doi.org/10.1016/j.carbon.2020.01.023
28 R Nie , J Chen , M Chen , Z Qi , T W Goh , T Ma , L Zhou , Y Pei , W Huang . Aerobic oxidation of the C–H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon. Green Chemistry, 2019, 21(6): 1461–1466
https://doi.org/10.1039/C8GC03653E
29 M Peng , P Liu , Z Li , Z Li , J Wen , C F Yan , Q Zhang , X Zeng , J Zou . Construction of Co/N-doped porous rose-like structure for efficient oxygen reduction reaction catalyst and Zn-air battery. Applied Surface Science, 2021, 566: 150665
https://doi.org/10.1016/j.apsusc.2021.150665
30 F Zhang , S Ji , H Wang , H Liang , X Wang , R Wang . Implanting cobalt atom clusters within nitrogen-doped carbon network as highly stable cathode for lithium–sulfur batteries. Small Methods, 2021, 5(6): 2100066
https://doi.org/10.1002/smtd.202100066
31 J Zhang , Y Su , Q Yu , H Zhang , Z Luo . Facile synthesis of N-doped Co/graphite C composites with melamine as carbon and nitrogen source with enhanced microwave absorption performance. Journal of Materials Science, 2021, 56(36): 19857–19869
https://doi.org/10.1007/s10853-021-06469-x
32 W Zhao , G Li , Z Tang . Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27: 178–197
https://doi.org/10.1016/j.nantod.2019.05.007
33 J Meng , X Liu , C Niu , Q Pang , J Li , F Liu , Z Liu , L Mai . Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49(10): 3142–3186
https://doi.org/10.1039/C9CS00806C
34 C Wang , J Kim , J Tang , M Kim , H Lim , V Malgras , J You , Q Xu , J Li , Y Yamauchi . New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40
https://doi.org/10.1016/j.chempr.2019.09.005
35 I S Amiinu , X Liu , Z Pu , W Li , Q Li , J Zhang , H Tang , H Zhang , S Mu . From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Advanced Functional Materials, 2018, 28(5): 1704638
https://doi.org/10.1002/adfm.201704638
36 Q Zhou , Z Zhang , J Cai , B Liu , Y Zhang , X Gong , X Sui , A Yu , L Zhao , Z Wang . et al.. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy, 2020, 71: 104592
https://doi.org/10.1016/j.nanoen.2020.104592
37 H Meng , Y Liu , H Liu , S Pei , X Yuan , H Li , Y Zhang . ZIF67@MFC-derived Co/N-C@CNFs interconnected frameworks with graphitic carbon-encapsulated Co nanoparticles as highly stable and efficient electrocatalysts for oxygen reduction reactions. ACS Applied Materials & Interfaces, 2020, 12(37): 41580–41589
https://doi.org/10.1021/acsami.0c12069
38 Z Li , R Liu , C Tang , Z Wang , X Chen , Y Jiang , C Wang , Y Yuan , W Wang , D Wang . et al.. Cobalt nanoparticles and atomic sites in nitrogen-doped carbon frameworks for highly sensitive sensing of hydrogen peroxide. Small, 2020, 16(15): 1902860
https://doi.org/10.1002/smll.201902860
39 J Liang , J Chen , H Shen , K Hu , B Zhao , J Kong . Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chemistry of Materials, 2021, 33(5): 1789–1798
https://doi.org/10.1021/acs.chemmater.0c04734
40 A Mahsud , J Chen , X Yuan , F Lyu , Q Zhong , J Chen , Y Yin , Q Zhang . Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Research, 2021, 14(8): 2819–2825
https://doi.org/10.1007/s12274-021-3292-4
41 Y V Kaneti , S Dutta , M S A Hossain , M J A Shiddiky , K L Tung , F K Shieh , C K Tsung , K C W Wu , Y Yamauchi . Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Advanced Materials, 2017, 29(38): 1700213
https://doi.org/10.1002/adma.201700213
42 Q Yu , D Guan , Z Zhuang , J Li , C Shi , W Luo , L Zhou , D Zhao , L Mai . Mass production of monodisperse carbon microspheres with size-dependent supercapacitor performance via aqueous self-catalyzed polymerization. ChemPlusChem, 2017, 82(6): 872–878
https://doi.org/10.1002/cplu.201700182
43 D S Bin , Z X Chi , Y Li , K Zhang , X Yang , Y G Sun , J Y Piao , A M Cao , L J Wan . Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. Journal of the American Chemical Society, 2017, 139(38): 13492–13498
https://doi.org/10.1021/jacs.7b07027
44 J Liu , S Z Qiao , H Liu , J Chen , A Orpe , D Zhao , G Q Lu . Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951
https://doi.org/10.1002/anie.201102011
45 C Shi , Y Liu , R Qi , J Li , J Zhu , R Yu , S Li , X Hong , J Wu , S Xi . et al.. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87: 106153
https://doi.org/10.1016/j.nanoen.2021.106153
46 J Gao , N Ma , Y Zheng , J Zhang , J Gui , C Guo , H An , X Tan , Z Yin , D Ma . Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction. ChemCatChem, 2017, 9(9): 1601–1609
https://doi.org/10.1002/cctc.201601207
47 M Wu , W Zhan , Y Guo , Y Guo , Y Wang , L Wang , G Lu . An effective Mn–Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General, 2016, 523: 97–106
https://doi.org/10.1016/j.apcata.2016.06.001
48 I Hermans , T L Nguyen , P A Jacobs , J Peeters . Autoxidation of cyclohexane: conventional views challenged by theory and experiment. ChemPhysChem, 2005, 6(4): 637–645
https://doi.org/10.1002/cphc.200400211
49 E Yuan , H Liu , Y Tao , J Xie , R Jian , P Jian , J Liu . Density functional theory study of selective aerobic oxidation of cyclohexane: the roles of acetic acid and cobalt ion. Journal of Molecular Modeling, 2019, 25(3): 1–10
https://doi.org/10.1007/s00894-019-3949-z
[1] FCE-23074-OF-CL_suppl_1 Download
[1] Yuke Zhang, Hongxue Xu, Haonan Wu, Lijuan Shi, Jiancheng Wang, Qun Yi. Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture[J]. Front. Chem. Sci. Eng., 2024, 18(1): 4-.
[2] Fateme Abbasi, Javad Karimi-Sabet, Zeinab Abbasi, Cyrus Ghotbi. Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1139-1148.
[3] Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Front. Chem. Sci. Eng., 2022, 16(6): 939-949.
[4] Gaofeng Jin, Jiale Zhang, Baoying Dang, Feichao Wu, Jingde Li. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2022, 16(4): 511-522.
[5] Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
[6] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[7] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[8] Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2017, 11(4): 594-602.
[9] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
[10] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed