Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (1) : 4    https://doi.org/10.1007/s11705-023-2370-4
RESEARCH ARTICLE
Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture
Yuke Zhang1, Hongxue Xu2, Haonan Wu2, Lijuan Shi2(), Jiancheng Wang1(), Qun Yi2,3()
1. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
2. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
3. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
 Download: PDF(8801 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CO2 capture is one of the key technologies for dealing with the global warming and implementing low-carbon development strategy. The emergence of ionic metal-organic frameworks (I-MOFs) has diversified the field of porous materials, which have been extensively applied for gas adsorption and separation. In this work, amino-functionalized imidazolium ionic liquid as organic monodentate ligand was used for one step synthesis microporous Cu based I-MOFs. Precise tuning of the adsorption properties was obtained by incorporating aromatic anions, such as phenoxy, benzene carboxyl, and benzene sulfonic acid group into the I-MOFs via a facile ion exchange method. The new I-MOFs showed high thermal stability and high capacity of 5.4 mmol·g–1 under atmospheric conditions for selective adsorption of CO2. The active sites of microporous Cu-MOF are the ion basic center and unsaturated metal, and electrostatic attraction and hydroxyl bonding between CO2 and modified functional sulfonic groups are responsible for the adsorption. This work provides a feasible strategy for the design of I-MOF for functional gas capture.

Keywords carbon dioxide capture      micropores      ionic liquids      multi-site synergism      ionic metal-organic frameworks     
Corresponding Author(s): Lijuan Shi,Jiancheng Wang,Qun Yi   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 15 September 2023   Issue Date: 09 November 2023
 Cite this article:   
Yuke Zhang,Hongxue Xu,Haonan Wu, et al. Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture[J]. Front. Chem. Sci. Eng., 2024, 18(1): 4.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2370-4
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I1/4
Fig.1  (a) Schematic diagram of the synthesis of Cu-AFIL-M; (b) experimental and calculated XRD pattern for Cu-BTC and Cu-AFIL-M; (c) FTIR spectra for AFIL, BTC and Cu-AFIL-M (450–4000 cm–1); (d) comparative N2 adsorption-desorption curve and (e) pore size distribution of Cu-AFIL-M and Cu-BTC.
Fig.2  (a) XPS survey spectra of Cu-AFIL-M; high-resolution spectra of Cu 2p (b) and N 1s (c); (d) weight loss curve and thermal analysis curve of Cu-AFIL-M; (e) SEM images of Cu-AFIL-M and the EDS analysis corresponding to different surface elements.
Fig.3  (a) FTIR spectra of Cu-AFIL-M-x samples in the range of 450–4000 cm–1;(b) enlarged view of the FTIR spectra in (a) in the range of 1000–1250 cm–1; (c) crystal structures of Cu-AFIL-M-x with different counterions; (d) CO2 adsorption capacity of Cu-AFIL-M-x samples in the range of 10–90 kPa, 25 °C.
Fig.4  (a) Comparison of the adsorption isotherms and the adsorption rate of Cu-BTC, Cu-AFIL-M and Cu-AFIL-M-SB for CO2 at 25 °C; (b) reusability test of Cu-AFIL-M and Cu-AFIL-M-SB samples; (c) crystal structure and (d) FTIR spectra of fresh and used Cu-AFIL-M-SB.
Adsorbent Pressure/kPa Temperature/°C CO2 capacity/(mmol·g–1) Ref.
Cu-AFIL-M-SB 100 25 5.4 This work
Cu-AFIL-M 100 25 5.0 This work
BUT-161 100 25 2.1 [32]
FeTPPs@Cu-BTC 100 25 6.0 [33]
GO@MOF-505 100 25 3.9 [34]
JLU-Liu46 100 25 4.6 [35]
CALF-20 120 20 4.1 [36]
MOF-177-EDTA-20% 100 25 2.8 [37]
PolyILs@MIL-101 100 25 2.8 [38]
Mg-MOF-74 100 25 7.9 [39]
Mg2(dobpdc) 100 25 2.0 [40]
Al(HCOO)3(ALF) 118 50 4.3 [41]
F-MOF2@AC-1 100 25 3.0 [42]
Tab.1  Comparison of the CO2 adsorption performance at 25 °C, 100 kPa
Active sites Cu-AFIL-M Cu-AFIL-M-SB
Total content of active sites/(mmol·g–1) 0.465 1.195
Hydrogen bonding sites (peak at ~90 °C)/(mmol·g–1) 0.050 0.179
Anion sites (peak at ~ 205–215 °C)/ (mmol·g–1) 0.011 0.069
Unsaturated metal sites (peak at ~250 °C)/(mmol·g–1) 0.404 0.681
Tab.2  The content of active sites in Cu-AFIL-M-SB and Cu-AFIL-M samples obtained from CO2-TPD
Fig.5  TPD curves for CO2 corresponding to the Cu-AFIL-M and Cu-AFIL-M-SB samples.
Fig.6  IAST selectivity for (a) CO2/N2 and (b) CO2/CH4 at 298 K.
Fig.7  (a) Interaction energy of Cu-BTC and Cu-AFIL-M-SB with CO2; (b) isothermal curve of Cu-AFIL-M and Cu-AFIL-M-SB; (c) views of binding sites (A: Cl, B: O, C: COO, D: SO3) for CO2 adsorption on different Cu-MOFs (c-1: Cu-AFIL-M, c-2: Cu-AFIL-M-Phe, c-3: Cu-AFIL-M-CB, c-4: Cu-AFIL-M-SB) with various anions (distance units: Å).
Fig.8  Fitting of experimental (solid line) and isothermal models (dot line): (a) Langmuir model; (b) Freundlich model; (c) Temkin model for the adsorption of CO2 on Cu-AFIL-M-x; (d) pseudo-second-order kinetics plots for the adsorption of CO2 on Cu-AFIL-M-x at 25 °C and 98 kPa.
Sample name Langmuir Freundlich Temkin
KL RL R2 n−1 Kf R2 A B R2
Cu-AFIL-M 0.3405 0.7497 0.9999 0.8907 209.6208 0.9989 10.2987 78.4064 0.9315
Cu-AFIL-M-Phe 14.6129 0.0273 0.9276 0.2137 55.4843 0.9953 340.4013 9.3808 0.9836
Cu-AFIL-M-CB 39.5000 0.1242 0.9049 0.0970 127.8682 0.9968 9.4226 × 105 11.1270 0.9939
Cu-AFIL-M-SB 7.8077 0.0704 0.8357 0.0327 398.9436 0.9143 5.4717 × 107 22.6950 0.9293
Tab.3  Relevant parameters of Langmuir, Freundlich and Temkin isothermal adsorption models on Cu-AFIL-M-x
Pseudo-first-order R2 Pseudo-second-order qe K2 R2 qc
Cu-AFIL-M 0.7353 Cu-AFIL-M 200.4008 0.0817 0.99998 200.1424
Cu-AFIL-M-Phe 0.6270 Cu-AFIL-M-Phe 55.18764 1.0712 0.99994 55.1006
Cu-AFIL-M-CB 0.6332 Cu-AFIL-M-CB 127.3885 1.2365 0.99997 127.1179
Cu-AFIL-M-SB 0.8846 Cu-AFIL-M-SB 400.0000 0.1483 1.00000 400.4370
Tab.4  Kinetic fitting parameters obtained for the adsorption of CO2 on Cu-AFIL-M-x
1 I Idris, A Z Abdullah, I K Shamsudin, M R Othman. Comparative analyses of carbon dioxide capture from power plant flue gas surrogate by micro and mesoporous adsorbents. Journal of Environmental Chemical Engineering, 2019, 7(3): 103115
https://doi.org/10.1016/j.jece.2019.103115
2 IEA. Carbon Capture, Utilisation and Storage, 2022, Available online at the website of iea.org
3 Z Zhang, Y Zheng, L Qian, D Luo, H Dou, G Wen, A Yu, Z Chen. Emerging trends in sustainable CO2-management materials. Advanced Materials, 2022, 34(29): 2201547
https://doi.org/10.1002/adma.202201547
4 C H Kim, S Y Lee, S J Park. Efficient micropore sizes for carbon dioxide physisorption of pine cone-based carbonaceous materials at different temperatures. Journal of CO2 Utilization, 2021, 54: 101770
https://doi.org/10.1016/j.jcou.2021.101770
5 A Justin, J Espín, I Kochetygov, M Asgari, O Trukhina, W L Queen. A two step postsynthetic modification strategy: appending short chain polyamines to Zn-NH2-BDC MOF for enhanced CO2 adsorption. Inorganic Chemistry, 2021, 60(16): 11720–11729
https://doi.org/10.1021/acs.inorgchem.1c01216
6 L G T Gouveia, C B Agustini, O W Perez-Lopez, M Gutterres. CO2 adsorption using solids with different surface and acid-base properties. Journal of Environmental Chemical Engineering, 2020, 8(4): 103823
https://doi.org/10.1016/j.jece.2020.103823
7 M Sai Bhargava Reddy, D Ponnamma, K K Sadasivuni, B Kumar, A M Abdullah. Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11(21): 12658–12681
https://doi.org/10.1039/D0RA10902A
8 T K Vo, W S Kim, J Kim. Ethylenediamine-incorporated MIL-101(Cr)-NH2 metal-organic frameworks for enhanced CO2 adsorption. Korean Journal of Chemical Engineering, 2020, 37(7): 1206–1211
https://doi.org/10.1007/s11814-020-0548-8
9 Y Zhou, J Zhang, L Wang, X Cui, X Liu, S S Wong, H An, N Yan, J Xie, C Yu. et al.. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320
https://doi.org/10.1126/science.aax5776
10 J Cao, W Shan, Q Wang, X Ling, G Li, Y Lyu, Y Zhou, J Wang. Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Applied Materials & Interfaces, 2019, 11(6): 6031–6041
https://doi.org/10.1021/acsami.8b19420
11 T T Wang, B Meng, Y Zhou, Y Wang, L Wang, L F Ding, Y Zhou, J Wang. Confining organic cations in metal organic framework allows molecular level regulation of CO2 capture. AIChE Journal, 2023, 69(9): e18126
https://doi.org/10.1002/aic.18126
12 Z I Zulkifli, K L Lim, L P Teh. Metal-organic frameworks (MOFs) and their applications in CO2 adsorption and conversion. ChemistrySelect, 2022, 7(22): e202200572
https://doi.org/10.1002/slct.202200572
13 M Feng, M Cheng, X Ji, L Zhou, Y Dang, K Bi, Z Dai, Y Dai. Finding the optimal CO2 adsorption material: prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 2022, 302: 122111
https://doi.org/10.1016/j.seppur.2022.122111
14 T Ghanbari, F Abnisa, W M A Wan Daud. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090
https://doi.org/10.1016/j.scitotenv.2019.135090
15 A Yurduşen, Y Yürüm. A controlled aynthesis atrategy to wnhance the CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores. Industrial & Engineering Chemistry Research, 2019, 58(31): 14058–14072
https://doi.org/10.1021/acs.iecr.9b01653
16 C Klumpen, F Radakovitsch, A Jess, J Senker. BILP-19—an ultramicroporous organic network with exceptional carbon dioxide uptake. Molecules, 2017, 22(8): 1343
https://doi.org/10.3390/molecules22081343
17 Z Shi, X Li, X Yao, Y B Zhang. MOF adsorbents capture CO2 on an industrial scale. Science Bulletin, 2022, 67(9): 885–887
https://doi.org/10.1016/j.scib.2022.02.015
18 N A A Qasem, A Abuelyamen, R Ben-Mansour. Enhancing CO2 adsorption capacity and cycling stability of Mg-MOF-74. Arabian Journal for Science and Engineering, 2021, 46(7): 6219–6228
https://doi.org/10.1007/s13369-020-04946-0
19 O P Mahajan, M Morishita, P L Jr Walker. Dynamic adsorption of carbon dioxide on microporous carbons. Carbon, 1970, 8(2): 167–179
https://doi.org/10.1016/0008-6223(70)90111-9
20 Y Xie, H Cui, H Wu, R B Lin, W Zhou, B Chen. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angewandte Chemie International Edition, 2021, 60(17): 9604–9609
https://doi.org/10.1002/anie.202100584
21 A Pal, S Chand, S M Elahi, M C Das. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading. Dalton Transactions, 2017, 46(44): 15280–15286
https://doi.org/10.1039/C7DT03341A
22 A A Azmi, M A A Aziz. Mesoporous adsorbent for CO2 capture application under mild condition: a review. Journal of Environmental Chemical Engineering, 2019, 7(2): 103022
https://doi.org/10.1016/j.jece.2019.103022
23 J An, N L Rosi. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579
https://doi.org/10.1021/ja1012992
24 S Dutta, S Mukherjee, O T Qazvini, A K Gupta, S Sharma, D Mahato, R Babarao, S K Ghosh. Three-in-one C2H2-selectivity-guided adsorptive separation across an isoreticular family of cationic square-lattice MOFs. Angewandte Chemie International Edition, 2022, 61(4): e202114132
https://doi.org/10.1002/anie.202114132
25 F P Kinik, C Altintas, V Balci, B Koyuturk, A Uzun, S Keskin. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Applied Materials & Interfaces, 2016, 8(45): 30992–31005
https://doi.org/10.1021/acsami.6b11087
26 J Espín, L Garzón-Tovar, G Boix, I Imaz, D Maspoch. The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chemical Communications, 2018, 54(33): 4184–4187
https://doi.org/10.1039/C8CC01593G
27 Y K Zhang, Y Y Duan, H N Wu, H X Xu, F Pei, L J Shi, J C Wang, Q Yi. Ionic-liquid-assisted one-step construction of mesoporous metal-organic frameworks. Langmuir, 2023, 39(7): 2491–2499
https://doi.org/10.1021/acs.langmuir.2c02412
28 H Wu, Q Li, Y Zhang, M Qiu, Y Liao, H Xu, L Shi, Q Yi. One-step supramolecular fabrication of ionic liquid/ZIF-8 nanocomposites for low-energy CO2 capture from flue gas and conversion. Fuel, 2022, 322: 124175
https://doi.org/10.1016/j.fuel.2022.124175
29 D Zhang, R Qu, H Zhang, F Zhang. Differentiation of chemisorption and physisorption of carbon dioxide on imidazolium-type poly(ionic liquid) brushes. Journal of Wuhan University of Technology. Materials Science Edition, 2020, 35(4): 750–757
https://doi.org/10.1007/s11595-020-2317-2
30 A B Kanj, R Verma, M Liu, J Helfferich, W Wenzel, L Heinke. Bunching and immobilization of ionic liquids in nanoporous metal-organic framework. Nano Letters, 2019, 19(3): 2114–2120
https://doi.org/10.1021/acs.nanolett.8b04694
31 Y Zhang, M Qiu, J Li, H Wu, L Shi, Q Yi. One-step supramolecular construction of Lewis pair poly(ionic liquids) for atmospheric CO2 conversion to cyclic carbonates. Fuel, 2023, 332: 126191
https://doi.org/10.1016/j.fuel.2022.126191
32 Y H Zhang, J Q Bai, Y Chen, X J Kong, T He, L H Xie, J R A Li. Zn(II)-based pillar-layered metal-organic framework: synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158: 283–289
https://doi.org/10.1016/j.poly.2018.10.067
33 G Lei, G Xi, Z Liu, Q Li, H Cheng, H Liu. Enhancing selective adsorption of CO2 through encapsulating FeTPPs into Cu-BTC. Chemical Engineering Journal, 2023, 461: 141977
https://doi.org/10.1016/j.cej.2023.141977
34 Y Chen, D Lv, J Wu, J Xiao, H Xi, Q Xia, Z Li. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chemical Engineering Journal, 2017, 308: 1065–1072
https://doi.org/10.1016/j.cej.2016.09.138
35 B Liu, S Yao, X Liu, X Li, R Krishna, G Li, Q Huo, Y Liu. Two analogous polyhedron-based MOFs with high density of lewis basic sites and open metal sites: significant CO2 capture and gas selectivity performance. ACS Applied Materials & Interfaces, 2017, 9(38): 32820–32828
https://doi.org/10.1021/acsami.7b10795
36 J B Lin, T T T Nguyen, R Vaidhyanathan, J Burner, J M Taylor, H Durekova, F Akhtar, R K Mah, O Ghaffari-Nik, S Marx. et al.. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374(6574): 1464–1469
https://doi.org/10.1126/science.abi7281
37 S Gaikwad, Y Kim, R Gaikwad, S Han. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523
https://doi.org/10.1016/j.jece.2021.105523
38 M Ding, H L Jiang. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catalysis, 2018, 8(4): 3194–3201
https://doi.org/10.1021/acscatal.7b03404
39 D A Yang, H Y Cho, J Kim, S T Yang, W S Ahn. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science, 2012, 5(4): 6465–6473
https://doi.org/10.1039/C1EE02234B
40 E J Kim, R L Siegelman, H Z H Jiang, A C Forse, J H Lee, J D Martell, P J Milner, J M Falkowski, J B Neaton, J A Reimer. et al.. Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science, 2020, 369(6502): 392–396
https://doi.org/10.1126/science.abb3976
41 M Karimi, M Shirzad, J A C Silva, A E Rodrigues. Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters, 2023, 21(4): 2041–2084
https://doi.org/10.1007/s10311-023-01589-z
42 A Chakraborty, S Roy, M Eswaramoorthy, T K Maji. Flexible MOF-aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8423–8430
https://doi.org/10.1039/C6TA09886J
43 T IshiiT Kyotani. Materials Science and Engineering of Carbon. 2nd ed. Oxford: Butterworth-Heinemann, 2016, 287–305
44 I Langmuir. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute, 1917, 183(1): 102–105
https://doi.org/10.1016/S0016-0032(17)90938-X
45 H. Freundlich. M. Over the Adsorption in Solution. The Journal of Physical Chemistry A, 1906, 57: 385–470
https://doi.org/10.1515/zpch-1907-5723
46 J Wang, X Guo. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere, 2020, 258: 127279
https://doi.org/10.1016/j.chemosphere.2020.127279
47 X Liu, W Gong, J Luo, C Zou, Y Yang, S Yang. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite. Applied Surface Science, 2016, 362: 517–524
https://doi.org/10.1016/j.apsusc.2015.11.151
[1] Ting He, Jipeng Yan, Wenzhe Xiao, Jian Sun. Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials[J]. Front. Chem. Sci. Eng., 2023, 17(7): 798-816.
[2] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[3] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[4] Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution[J]. Front. Chem. Sci. Eng., 2014, 8(1): 123-131.
[5] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[6] Hiroshi MACHIDA, Ryosuke TAGUCHI, Yoshiyuki SATO, Louw J. FLOURUSSE, Cor J. PETERS, Richard L. SMITH. Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations[J]. Front Chem Eng Chin, 2009, 3(1): 12-19.
[7] ZHU Jiqin, YU Yanmei, CHEN Jian, FEI Weiyang. Measurement of activity coefficients at infinite dilution for hydrocarbons in imidazolium-based ionic liquids and QSPR model[J]. Front. Chem. Sci. Eng., 2007, 1(2): 190-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed