|
|
Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture |
Yuke Zhang1, Hongxue Xu2, Haonan Wu2, Lijuan Shi2( ), Jiancheng Wang1( ), Qun Yi2,3( ) |
1. State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China 2. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China 3. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China |
|
|
Abstract CO2 capture is one of the key technologies for dealing with the global warming and implementing low-carbon development strategy. The emergence of ionic metal-organic frameworks (I-MOFs) has diversified the field of porous materials, which have been extensively applied for gas adsorption and separation. In this work, amino-functionalized imidazolium ionic liquid as organic monodentate ligand was used for one step synthesis microporous Cu based I-MOFs. Precise tuning of the adsorption properties was obtained by incorporating aromatic anions, such as phenoxy, benzene carboxyl, and benzene sulfonic acid group into the I-MOFs via a facile ion exchange method. The new I-MOFs showed high thermal stability and high capacity of 5.4 mmol·g–1 under atmospheric conditions for selective adsorption of CO2. The active sites of microporous Cu-MOF are the ion basic center and unsaturated metal, and electrostatic attraction and hydroxyl bonding between CO2 and modified functional sulfonic groups are responsible for the adsorption. This work provides a feasible strategy for the design of I-MOF for functional gas capture.
|
Keywords
carbon dioxide capture
micropores
ionic liquids
multi-site synergism
ionic metal-organic frameworks
|
Corresponding Author(s):
Lijuan Shi,Jiancheng Wang,Qun Yi
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Just Accepted Date: 15 September 2023
Issue Date: 09 November 2023
|
|
1 |
I Idris, A Z Abdullah, I K Shamsudin, M R Othman. Comparative analyses of carbon dioxide capture from power plant flue gas surrogate by micro and mesoporous adsorbents. Journal of Environmental Chemical Engineering, 2019, 7(3): 103115
https://doi.org/10.1016/j.jece.2019.103115
|
2 |
IEA. Carbon Capture, Utilisation and Storage, 2022, Available online at the website of iea.org
|
3 |
Z Zhang, Y Zheng, L Qian, D Luo, H Dou, G Wen, A Yu, Z Chen. Emerging trends in sustainable CO2-management materials. Advanced Materials, 2022, 34(29): 2201547
https://doi.org/10.1002/adma.202201547
|
4 |
C H Kim, S Y Lee, S J Park. Efficient micropore sizes for carbon dioxide physisorption of pine cone-based carbonaceous materials at different temperatures. Journal of CO2 Utilization, 2021, 54: 101770
https://doi.org/10.1016/j.jcou.2021.101770
|
5 |
A Justin, J Espín, I Kochetygov, M Asgari, O Trukhina, W L Queen. A two step postsynthetic modification strategy: appending short chain polyamines to Zn-NH2-BDC MOF for enhanced CO2 adsorption. Inorganic Chemistry, 2021, 60(16): 11720–11729
https://doi.org/10.1021/acs.inorgchem.1c01216
|
6 |
L G T Gouveia, C B Agustini, O W Perez-Lopez, M Gutterres. CO2 adsorption using solids with different surface and acid-base properties. Journal of Environmental Chemical Engineering, 2020, 8(4): 103823
https://doi.org/10.1016/j.jece.2020.103823
|
7 |
M Sai Bhargava Reddy, D Ponnamma, K K Sadasivuni, B Kumar, A M Abdullah. Carbon dioxide adsorption based on porous materials. RSC Advances, 2021, 11(21): 12658–12681
https://doi.org/10.1039/D0RA10902A
|
8 |
T K Vo, W S Kim, J Kim. Ethylenediamine-incorporated MIL-101(Cr)-NH2 metal-organic frameworks for enhanced CO2 adsorption. Korean Journal of Chemical Engineering, 2020, 37(7): 1206–1211
https://doi.org/10.1007/s11814-020-0548-8
|
9 |
Y Zhou, J Zhang, L Wang, X Cui, X Liu, S S Wong, H An, N Yan, J Xie, C Yu. et al.. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320
https://doi.org/10.1126/science.aax5776
|
10 |
J Cao, W Shan, Q Wang, X Ling, G Li, Y Lyu, Y Zhou, J Wang. Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Applied Materials & Interfaces, 2019, 11(6): 6031–6041
https://doi.org/10.1021/acsami.8b19420
|
11 |
T T Wang, B Meng, Y Zhou, Y Wang, L Wang, L F Ding, Y Zhou, J Wang. Confining organic cations in metal organic framework allows molecular level regulation of CO2 capture. AIChE Journal, 2023, 69(9): e18126
https://doi.org/10.1002/aic.18126
|
12 |
Z I Zulkifli, K L Lim, L P Teh. Metal-organic frameworks (MOFs) and their applications in CO2 adsorption and conversion. ChemistrySelect, 2022, 7(22): e202200572
https://doi.org/10.1002/slct.202200572
|
13 |
M Feng, M Cheng, X Ji, L Zhou, Y Dang, K Bi, Z Dai, Y Dai. Finding the optimal CO2 adsorption material: prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 2022, 302: 122111
https://doi.org/10.1016/j.seppur.2022.122111
|
14 |
T Ghanbari, F Abnisa, W M A Wan Daud. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707: 135090
https://doi.org/10.1016/j.scitotenv.2019.135090
|
15 |
A Yurduşen, Y Yürüm. A controlled aynthesis atrategy to wnhance the CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores. Industrial & Engineering Chemistry Research, 2019, 58(31): 14058–14072
https://doi.org/10.1021/acs.iecr.9b01653
|
16 |
C Klumpen, F Radakovitsch, A Jess, J Senker. BILP-19—an ultramicroporous organic network with exceptional carbon dioxide uptake. Molecules, 2017, 22(8): 1343
https://doi.org/10.3390/molecules22081343
|
17 |
Z Shi, X Li, X Yao, Y B Zhang. MOF adsorbents capture CO2 on an industrial scale. Science Bulletin, 2022, 67(9): 885–887
https://doi.org/10.1016/j.scib.2022.02.015
|
18 |
N A A Qasem, A Abuelyamen, R Ben-Mansour. Enhancing CO2 adsorption capacity and cycling stability of Mg-MOF-74. Arabian Journal for Science and Engineering, 2021, 46(7): 6219–6228
https://doi.org/10.1007/s13369-020-04946-0
|
19 |
O P Mahajan, M Morishita, P L Jr Walker. Dynamic adsorption of carbon dioxide on microporous carbons. Carbon, 1970, 8(2): 167–179
https://doi.org/10.1016/0008-6223(70)90111-9
|
20 |
Y Xie, H Cui, H Wu, R B Lin, W Zhou, B Chen. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angewandte Chemie International Edition, 2021, 60(17): 9604–9609
https://doi.org/10.1002/anie.202100584
|
21 |
A Pal, S Chand, S M Elahi, M C Das. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading. Dalton Transactions, 2017, 46(44): 15280–15286
https://doi.org/10.1039/C7DT03341A
|
22 |
A A Azmi, M A A Aziz. Mesoporous adsorbent for CO2 capture application under mild condition: a review. Journal of Environmental Chemical Engineering, 2019, 7(2): 103022
https://doi.org/10.1016/j.jece.2019.103022
|
23 |
J An, N L Rosi. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society, 2010, 132(16): 5578–5579
https://doi.org/10.1021/ja1012992
|
24 |
S Dutta, S Mukherjee, O T Qazvini, A K Gupta, S Sharma, D Mahato, R Babarao, S K Ghosh. Three-in-one C2H2-selectivity-guided adsorptive separation across an isoreticular family of cationic square-lattice MOFs. Angewandte Chemie International Edition, 2022, 61(4): e202114132
https://doi.org/10.1002/anie.202114132
|
25 |
F P Kinik, C Altintas, V Balci, B Koyuturk, A Uzun, S Keskin. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: elucidation of interactions and their consequences on performance. ACS Applied Materials & Interfaces, 2016, 8(45): 30992–31005
https://doi.org/10.1021/acsami.6b11087
|
26 |
J Espín, L Garzón-Tovar, G Boix, I Imaz, D Maspoch. The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chemical Communications, 2018, 54(33): 4184–4187
https://doi.org/10.1039/C8CC01593G
|
27 |
Y K Zhang, Y Y Duan, H N Wu, H X Xu, F Pei, L J Shi, J C Wang, Q Yi. Ionic-liquid-assisted one-step construction of mesoporous metal-organic frameworks. Langmuir, 2023, 39(7): 2491–2499
https://doi.org/10.1021/acs.langmuir.2c02412
|
28 |
H Wu, Q Li, Y Zhang, M Qiu, Y Liao, H Xu, L Shi, Q Yi. One-step supramolecular fabrication of ionic liquid/ZIF-8 nanocomposites for low-energy CO2 capture from flue gas and conversion. Fuel, 2022, 322: 124175
https://doi.org/10.1016/j.fuel.2022.124175
|
29 |
D Zhang, R Qu, H Zhang, F Zhang. Differentiation of chemisorption and physisorption of carbon dioxide on imidazolium-type poly(ionic liquid) brushes. Journal of Wuhan University of Technology. Materials Science Edition, 2020, 35(4): 750–757
https://doi.org/10.1007/s11595-020-2317-2
|
30 |
A B Kanj, R Verma, M Liu, J Helfferich, W Wenzel, L Heinke. Bunching and immobilization of ionic liquids in nanoporous metal-organic framework. Nano Letters, 2019, 19(3): 2114–2120
https://doi.org/10.1021/acs.nanolett.8b04694
|
31 |
Y Zhang, M Qiu, J Li, H Wu, L Shi, Q Yi. One-step supramolecular construction of Lewis pair poly(ionic liquids) for atmospheric CO2 conversion to cyclic carbonates. Fuel, 2023, 332: 126191
https://doi.org/10.1016/j.fuel.2022.126191
|
32 |
Y H Zhang, J Q Bai, Y Chen, X J Kong, T He, L H Xie, J R A Li. Zn(II)-based pillar-layered metal-organic framework: synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158: 283–289
https://doi.org/10.1016/j.poly.2018.10.067
|
33 |
G Lei, G Xi, Z Liu, Q Li, H Cheng, H Liu. Enhancing selective adsorption of CO2 through encapsulating FeTPPs into Cu-BTC. Chemical Engineering Journal, 2023, 461: 141977
https://doi.org/10.1016/j.cej.2023.141977
|
34 |
Y Chen, D Lv, J Wu, J Xiao, H Xi, Q Xia, Z Li. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chemical Engineering Journal, 2017, 308: 1065–1072
https://doi.org/10.1016/j.cej.2016.09.138
|
35 |
B Liu, S Yao, X Liu, X Li, R Krishna, G Li, Q Huo, Y Liu. Two analogous polyhedron-based MOFs with high density of lewis basic sites and open metal sites: significant CO2 capture and gas selectivity performance. ACS Applied Materials & Interfaces, 2017, 9(38): 32820–32828
https://doi.org/10.1021/acsami.7b10795
|
36 |
J B Lin, T T T Nguyen, R Vaidhyanathan, J Burner, J M Taylor, H Durekova, F Akhtar, R K Mah, O Ghaffari-Nik, S Marx. et al.. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374(6574): 1464–1469
https://doi.org/10.1126/science.abi7281
|
37 |
S Gaikwad, Y Kim, R Gaikwad, S Han. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523
https://doi.org/10.1016/j.jece.2021.105523
|
38 |
M Ding, H L Jiang. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catalysis, 2018, 8(4): 3194–3201
https://doi.org/10.1021/acscatal.7b03404
|
39 |
D A Yang, H Y Cho, J Kim, S T Yang, W S Ahn. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science, 2012, 5(4): 6465–6473
https://doi.org/10.1039/C1EE02234B
|
40 |
E J Kim, R L Siegelman, H Z H Jiang, A C Forse, J H Lee, J D Martell, P J Milner, J M Falkowski, J B Neaton, J A Reimer. et al.. Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science, 2020, 369(6502): 392–396
https://doi.org/10.1126/science.abb3976
|
41 |
M Karimi, M Shirzad, J A C Silva, A E Rodrigues. Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters, 2023, 21(4): 2041–2084
https://doi.org/10.1007/s10311-023-01589-z
|
42 |
A Chakraborty, S Roy, M Eswaramoorthy, T K Maji. Flexible MOF-aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8423–8430
https://doi.org/10.1039/C6TA09886J
|
43 |
T IshiiT Kyotani. Materials Science and Engineering of Carbon. 2nd ed. Oxford: Butterworth-Heinemann, 2016, 287–305
|
44 |
I Langmuir. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute, 1917, 183(1): 102–105
https://doi.org/10.1016/S0016-0032(17)90938-X
|
45 |
H. Freundlich. M. Over the Adsorption in Solution. The Journal of Physical Chemistry A, 1906, 57: 385–470
https://doi.org/10.1515/zpch-1907-5723
|
46 |
J Wang, X Guo. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere, 2020, 258: 127279
https://doi.org/10.1016/j.chemosphere.2020.127279
|
47 |
X Liu, W Gong, J Luo, C Zou, Y Yang, S Yang. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite. Applied Surface Science, 2016, 362: 517–524
https://doi.org/10.1016/j.apsusc.2015.11.151
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|