Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (7) : 798-816    https://doi.org/10.1007/s11705-023-2316-x
REVIEW ARTICLE
Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials
Ting He1, Jipeng Yan1, Wenzhe Xiao1, Jian Sun1,2()
1. Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2. Beijing Engineering Research Center of Cellulose and Its Derivatives, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(4351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The utilization of sustainable resources provides a path to relieving the problem of dependence on fossil resources. In this context, biomass materials have become a feasible substitute for petroleum-based materials. The development of biomass materials is booming and advanced biomass materials with various functional properties are used in many fields including medicine, electrochemistry, and environmental science. In recent years, ionic liquids have been widely used in biomass pretreatments and processing owing to their “green” characteristics and adjustable physicochemical properties. Thus, the effects of ionic liquids in biomass materials generation require further study. This review summarizes the multiple roles of ionic liquids in promoting the synthesis and application of advanced biomass materials as solvents, structural components, and modifiers. Finally, a prospective approach is proposed for producing additional higher-quality possibilities between ionic liquids and advanced biomass materials.

Keywords biomass materials      functional materials      ionic liquids      synthesis      structure-property relationship     
Corresponding Author(s): Jian Sun   
About author:

* These authors contributed equally to this work.

Just Accepted Date: 17 March 2023   Online First Date: 12 June 2023    Issue Date: 05 July 2023
 Cite this article:   
Ting He,Jipeng Yan,Wenzhe Xiao, et al. Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials[J]. Front. Chem. Sci. Eng., 2023, 17(7): 798-816.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2316-x
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I7/798
Fig.1  (a) This statistical graph is based on published data retrieved on the Web of Science by the keyword “biomass materials”, Nov. 19th, 2022; (b) this heat map is based on data from Web of Science, Nov. 19th, 2022, and analyzed by a VOS viewer.
Fig.2  Schematic diagram of ILs promoting the synthesis and application of advanced biomass materials.
Fig.3  Typical routes for the pretreatment of lignocellulosic biomass with ILs. Reprinted from Ref. [36].
Fig.4  Scanning electron microscopy (SEM) images of beads prepared from (a) commercially available chitin and (b) IL-extracted chitin (The beads size fraction used for imaging was > 250 μm). Reprinted with permission from Ref. [51], copyright 2017, American Chemical Society.
Fig.5  (a) Absorption spectra of RCCDs (Inset: optical images under daylight (left) and 365-nm UV light (right)); (b) excitation-dependent emission photoluminescence (PL) spectra of RCCDs at different wavelengths, increasing from 340 to 440 nm with 20 nm increments (Inset: normalized PL emission spectra). Reprinted with permission from Ref. [59], copyright 2018, American Chemical Society.
Fig.6  Reversible covalent chemistry between CO2 and amines linked to the chitosan polymer chain. Reprinted with permission from Ref. [66], copyright 2006, Royal Society of Chemistry.
Fig.7  Chemical scheme explaining the dispersing role of the IL. Reprinted with permission from Ref. [80], copyright 2020, Elsevier.
Fig.8  Schematic diagram of photochromic diarylethene dispersed on cellulose pulp fibers by IL [Bmim][NTf2]. Reprinted with permission from Ref. [82], copyright 2017, American Chemical Society.
Fig.9  Three different conducting mechanisms for composite CNT temperature sensors. (i–iii) Three different electron/ions transport modes in CNT and [Emim][NTf2] composite sensing materials: (i) the transport of charges via the body-body contacts among CNTs; (ii) the transport via the end-to-end contacts of CNTs; (iii) the transport via ILs. Reprinted with permission from Ref. [90], copyright 2019, Wiley.
Fig.10  (a) SEM images of E. coli, S. aureus, and C. albicans before treatment (control) and after treatment using the ionogel; (b) schematic diagram of the antibacterial mechanism of ionogel. Reprinted with permission from Ref. [94], copyright 2021, Royal Society of Chemistry.
Fig.11  Schematic diagram of the self-healing mechanism of the PAM/PBA-IL/CNF ionogel. Reprinted with permission from Ref. [96], copyright 2022, Wiley.
Fig.12  Electrochemical voltage and energy density of different electrolytes. Reprinted with permission from Ref. [134], copyright 2022, Elsevier.
Fig.13  The proposed mechanism for CS-[Emim][Br] catalyzed reaction. Reprinted with permission from Ref. [141], copyright 2012, Royal Society of Chemistry.
Fig.14  Molecular structures of cellulose, chitin, and chitosan and their potential reaction sites for chemical modification. Reprinted with permission from Ref. [147], copyright 2019, Wiley.
Fig.15  Schematic diagram of the functionalization of cellulose monolith by choline chloride/urea DES. Reprinted with permission from Ref. [165], copyright 2019, Elsevier.
1 Y Chen, L Zhang, Y Yang, B Pang, W Xu, G Duan, S Jiang, K Zhang. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Advanced Materials, 2021, 33(11): 2005569
https://doi.org/10.1002/adma.202005569
2 X Ji, H Shao, X Li, M W Ullah, G Luo, Z Xu, L Ma, X He, Z Lei, Q Li, X Jiang, G Yang, Y Zhang. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials, 2022, 285: 121530
https://doi.org/10.1016/j.biomaterials.2022.121530
3 P Cai, R Momen, Y Tian, L Yang, K Zou, A Massoudi, W Deng, H Hou, G Zou, X Ji. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Advanced Energy Materials, 2022, 12(5): 2103221
https://doi.org/10.1002/aenm.202103221
4 Z Yu, Y Wang, J Zheng, Y Xiang, P Zhao, J Cui, H Zhou, D Li. Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy, 2020, 68: 104382
https://doi.org/10.1016/j.nanoen.2019.104382
5 H Sun, B Yang, A Li. Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake. Chemical Engineering Journal, 2019, 372: 65–73
https://doi.org/10.1016/j.cej.2019.04.061
6 J Zhang, X Zhang, M Yang, S Singh, G Cheng. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresource Technology, 2021, 322: 124522
https://doi.org/10.1016/j.biortech.2020.124522
7 S Pang. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnology Advances, 2019, 37(4): 589–597
https://doi.org/10.1016/j.biotechadv.2018.11.004
8 A S Patri, B Mostofian, Y Pu, N Ciaffone, M Soliman, M D Smith, R Kumar, X Cheng, C E Wyman, L Tetard, A J Ragauskas, J C Smith, L Petridis, C M Cai. A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction. Journal of the American Chemical Society, 2019, 141(32): 12545–12557
https://doi.org/10.1021/jacs.8b10242
9 S P M Ventura, F A Silva, M V Quental, D Mondal, M G Freire, J A P Coutinho. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chemical Reviews, 2017, 117(10): 6984–7052
https://doi.org/10.1021/acs.chemrev.6b00550
10 J Guo, Z D Tucker, Y Wang, B L Ashfeld, T Luo. Ionic liquid enables highly efficient low temperature desalination by directional solvent extraction. Nature Communications, 2021, 12(1): 437
https://doi.org/10.1038/s41467-020-20706-y
11 L Gu, C Ran, L Chao, Y Bao, W Hui, Y Wang, Y Chen, X Gao, L Song. Designing ionic liquids as the solvent for efficient and stable perovskite solar cells. ACS Applied Materials & Interfaces, 2022, 14(20): 22870–22878
https://doi.org/10.1021/acsami.1c21035
12 C Deferm, M van de Voorde, J Luyten, H Oosterhof, J Fransaer, K Binnemans. Purification of indium by solvent extraction with undiluted ionic liquids. Green Chemistry, 2016, 18(14): 4116–4127
https://doi.org/10.1039/C6GC00586A
13 C Cai, T Hanada, A T N Fajar, M Goto. An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes. Desalination, 2021, 509: 115073
https://doi.org/10.1016/j.desal.2021.115073
14 A Portela-Grandío, S Peleteiro, R Yáñez, A Romaní. Integral valorization of acacia dealbata wood in organic medium catalyzed by an acidic ionic liquid. Bioresource Technology, 2021, 342: 126013
https://doi.org/10.1016/j.biortech.2021.126013
15 J Xu, L Dai, C Zhang, Y Gui, L Yuan, Y Lei, B Fan. Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. Bioresource Technology, 2020, 305: 123043
https://doi.org/10.1016/j.biortech.2020.123043
16 Q Hou, M Zhen, W Li, L Liu, J Liu, S Zhang, Y Nie, C Bai, X Bai, M Ju. Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid. Applied Catalysis B: Environmental, 2019, 253: 1–10
https://doi.org/10.1016/j.apcatb.2019.04.003
17 B Zhang, Y Xue, A Jiang, Z Xue, Z Li, J Hao. Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Applied Materials & Interfaces, 2017, 9(8): 7217–7223
https://doi.org/10.1021/acsami.7b00722
18 I A Andreev, N K Ratmanova, A U Augustin, O A Ivanova, I I Levina, V N Khrustalev, D B Werz, I V Trushkov. Protic ionic liquid as reagent, catalyst, and solvent: 1-methylimidazolium thiocyanate. Angewandte Chemie International Edition, 2021, 60(14): 7927–7934
https://doi.org/10.1002/anie.202016593
19 A Vaidya, S Mitragotri. Ionic liquid-mediated delivery of insulin to buccal mucosa. Journal of Controlled Release, 2020, 327: 26–34
https://doi.org/10.1016/j.jconrel.2020.07.037
20 N V Veríssimo, C F Saponi, T M Ryan, T L Greaves, J F B Pereira. Imidazolium-based ionic liquids as additives to preserve the enhanced green fluorescent protein fluorescent activity. Green Chemical Engineering, 2021, 2(4): 412–422
https://doi.org/10.1016/j.gce.2021.08.001
21 X Guan, Y Yu, K Wu, Z Hou, Z Ma, X Miao, T Fei, T Zhang. High sensitive humidity sensors based on biomass ionogels. IEEE Sensors Journal, 2022, 22(13): 12570–12575
https://doi.org/10.1109/JSEN.2022.3179146
22 Y Zhang, B Yuan, Y Zhang, Q Cao, C Yang, Y Li, J Zhou. Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chemical Engineering Journal, 2020, 400: 125984
https://doi.org/10.1016/j.cej.2020.125984
23 J Cui, Y Li, D Chen, T G Zhan, K D Zhang. Ionic liquid-based stimuli-responsive functional materials. Advanced Functional Materials, 2020, 30(50): 2005522
https://doi.org/10.1002/adfm.202005522
24 Y Chen, T Mu. Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energy & Environment, 2019, 4(2): 95–115
https://doi.org/10.1016/j.gee.2019.01.012
25 J Zhang, J Wu, J Yu, X Zhang, J He, J Zhang. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Materials Chemistry Frontiers, 2017, 1(7): 1273–1290
https://doi.org/10.1039/C6QM00348F
26 R A Sequeira, D Mondal, K Prasad. Neoteric solvent-based blue biorefinery: for chemicals, functional materials and fuels from oceanic biomass. Green Chemistry, 2021, 23(22): 8821–8847
https://doi.org/10.1039/D1GC03184H
27 S Beil, M Markiewicz, C S Pereira, P Stepnowski, J Thöming, S Stolte. Toward the proactive design of sustainable chemicals: ionic liquids as a prime example. Chemical Reviews, 2021, 121(21): 13132–13173
https://doi.org/10.1021/acs.chemrev.0c01265
28 Z Luo, W Li, J Yan, J Sun. Roles of ionic liquids in adjusting nature of ionogels: a mini review. Advanced Functional Materials, 2022, 32(32): 2203988
https://doi.org/10.1002/adfm.202203988
29 K S Khoo, X Tan, C W Ooi, K W Chew, W H Leong, Y H Chai, S H Ho, P L Show. How does ionic liquid play a role in sustainability of biomass processing?. Journal of Cleaner Production, 2021, 284: 124772
https://doi.org/10.1016/j.jclepro.2020.124772
30 Y M Bar-On, R Phillips, R Milo. The biomass distribution on earth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6506–6511
https://doi.org/10.1073/pnas.1711842115
31 W SchutyserT RendersG van den BosscheS van den BoschS F KoelewijnT EnnaertB F Sels. Catalysis in lignocellulosic biorefineries: the case of lignin conversion. In: Nanotechnology in Catalysis. Kluwer Academic Publishers Group, Hague, 2017: 537–584
32 Z Usmani, M Sharma, P Gupta, Y Karpichev, N Gathergood, R Bhat, V K Gupta. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 2020, 304: 123003
https://doi.org/10.1016/j.biortech.2020.123003
33 B M Upton, A M Kasko. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chemical Reviews, 2016, 116(4): 2275–2306
https://doi.org/10.1021/acs.chemrev.5b00345
34 Z Zhang, J Song, B Han. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chemical Reviews, 2017, 117(10): 6834–6880
https://doi.org/10.1021/acs.chemrev.6b00457
35 P Halder, S Kundu, S Patel, A Setiawan, R Atkin, R Parthasarthy, J Paz-Ferreiro, A Surapaneni, K Shah. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable & Sustainable Energy Reviews, 2019, 105: 268–292
https://doi.org/10.1016/j.rser.2019.01.052
36 Q Hou, M Ju, W Li, L Liu, Y Chen, Q Yang. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 2017, 22(3): 490
https://doi.org/10.3390/molecules22030490
37 X Shen, Y Xie, Q Wang, X Yi, J L Shamshina, R D Rogers. Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose, 2019, 26(6): 4005–4019
https://doi.org/10.1007/s10570-019-02328-w
38 C Driemeier, M M Oliveira, A A S Curvelo. Lignin contributions to the nanoscale porosity of raw and treated lignocelluloses as observed by calorimetric thermoporometry. Industrial Crops and Products, 2016, 82: 114–117
https://doi.org/10.1016/j.indcrop.2015.11.084
39 X Gao, X Chen, J Zhang, W Guo, F Jin, N Yan. Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3912–3920
https://doi.org/10.1021/acssuschemeng.6b00767
40 X Sun, Y Wang, Z Guo, B Xiao, Z Sun, H Yin, H Meng, X Sui, Q Zhao, Q Guo, A Wang, W Xu, S Liu, Y Li, S Lu, J Peng. Acellular cauda equina allograft as main material combined with biodegradable chitin conduit for regeneration of long-distance sciatic nerve defect in rats. Advanced Healthcare Materials, 2018, 7(17): 1800276
https://doi.org/10.1002/adhm.201800276
41 C Chen, Q Wu, Z Wan, Q Yang, Z Xu, D Li, Y Jin, O J Rojas. Mildly processed chitin used in one-component drinking straws and single use materials: strength, biodegradability and recyclability. Chemical Engineering Journal, 2022, 442: 136173
https://doi.org/10.1016/j.cej.2022.136173
42 G Arslan, I Sargin, M Kaya. Hexavalent chromium removal by magnetic particle-loaded micro-sized chitinous egg shells isolated from ephippia of water flea. International Journal of Biological Macromolecules, 2019, 129: 23–30
https://doi.org/10.1016/j.ijbiomac.2019.01.180
43 J L Shamshina, P S Barber, G Gurau, C S Griggs, R D Rogers. Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6072–6081
https://doi.org/10.1021/acssuschemeng.6b01434
44 R Castro, I Guerrero-Legarreta, R Bórquez. Chitin extraction from allopetrolisthes punctatus crab using lactic fermentation. Biotechnology Reports, 2018, 20: e00287
https://doi.org/10.1016/j.btre.2018.e00287
45 L D Tolesa, B S Gupta, M J Lee. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. International Journal of Biological Macromolecules, 2019, 130: 818–826
https://doi.org/10.1016/j.ijbiomac.2019.03.018
46 T Uto, S Idenoue, K Yamamoto, J Kadokawa. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. Physical Chemistry Chemical Physics, 2018, 20(31): 20669–20677
https://doi.org/10.1039/C8CP02749H
47 Y Qin, X Lu, N Sun, R D Rogers. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 2010, 12(6): 968–971
https://doi.org/10.1039/c003583a
48 S I Ahmad, R Ahmad, M S Khan, R Kant, S Shahid, L Gautam, G Hasan, M I Hassan. Chitin and its derivatives: structural properties and biomedical applications. International Journal of Biological Macromolecules, 2020, 164: 526–539
https://doi.org/10.1016/j.ijbiomac.2020.07.098
49 C F Hunt, W H Lin, N Voulvoulis. Evaluating alternatives to plastic microbeads in cosmetics. Nature Sustainability, 2021, 4(4): 366–372
https://doi.org/10.1038/s41893-020-00651-w
50 C S Lam, S Ramanathan, M Carbery, K Gray, K S Vanka, C Maurin, R Bush, T Palanisami. A comprehensive analysis of plastics and microplastic legislation worldwide. Water, Air, and Soil Pollution, 2018, 229(11): 345
https://doi.org/10.1007/s11270-018-4002-z
51 C A King, J L Shamshina, O Zavgorodnya, T Cutfield, L E Block, R D Rogers. Porous chitin microbeads for more sustainable cosmetics. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11660–11667
https://doi.org/10.1021/acssuschemeng.7b03053
52 Y Duan, A Freyburger, W Kunz, C Zollfrank. Cellulose and chitin composite materials from an ionic liquid and a green co-solvent. Carbohydrate Polymers, 2018, 192: 159–165
https://doi.org/10.1016/j.carbpol.2018.03.045
53 K Jedvert, T Heinze. Cellulose modification and shaping—a review. Journal of Polymer Engineering, 2017, 37(9): 845–860
https://doi.org/10.1515/polyeng-2016-0272
54 N Mohd, S F S Draman, M S N Salleh, N B Yusof. Dissolution of cellulose in ionic liquid: a review. AIP Conference Proceedings, 2017, 1809(1): 020035
https://doi.org/10.1063/1.4975450
55 R P Swatloski, S K Spear, J D Holbrey, R D Rogers. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 2002, 124(18): 4974–4975
https://doi.org/10.1021/ja025790m
56 Y Zhao, X Liu, J Wang, S Zhang. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem, 2012, 13(13): 3126–3133
https://doi.org/10.1002/cphc.201200286
57 X Yang, C Qiao, Y Li, T Li. Dissolution and resourcfulization of biopolymers in ionic liquids. Reactive & Functional Polymers, 2016, 100: 181–190
https://doi.org/10.1016/j.reactfunctpolym.2016.01.017
58 N Sjahro, R Yunus, L C Abdullah, S A Rashid, A J Asis, Z N Akhlisah. Recent advances in the application of cellulose derivatives for removal of contaminants from aquatic environments. Cellulose, 2021, 28(12): 7521–7557
https://doi.org/10.1007/s10570-021-03985-6
59 Y Jeong, K Moon, S Jeong, W G Koh, K Lee. Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bioimaging applications. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4510–4515
https://doi.org/10.1021/acssuschemeng.8b00353
60 D Souza, J P Mesquita, R M Lago, L D Caminhas, F V Pereira. Cellulose nanocrystals: a versatile precursor for the preparation of different carbon structures and luminescent carbon dots. Industrial Crops and Products, 2016, 93: 121–128
https://doi.org/10.1016/j.indcrop.2016.04.073
61 Y Wang, J Sun, B He, M Feng. Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: a mini review. Green Chemical Engineering, 2020, 1(2): 94–108
https://doi.org/10.1016/j.gce.2020.09.010
62 P S Bakshi, D Selvakumar, K Kadirvelu, N S Kumar. Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. International Journal of Biological Macromolecules, 2020, 150: 1072–1083
https://doi.org/10.1016/j.ijbiomac.2019.10.113
63 S Kou, L M Peters, M R Mucalo. Chitosan: a review of sources and preparation methods. International Journal of Biological Macromolecules, 2021, 169: 85–94
https://doi.org/10.1016/j.ijbiomac.2020.12.005
64 B Li, J Wang, Q Gui, H Yang. Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery. Bioactive Materials, 2020, 5(3): 577–583
https://doi.org/10.1016/j.bioactmat.2020.04.013
65 P Kumar, E Faujdar, R K Singh, S Paul, A Kukrety, V K Chhibber, S S Ray. High CO2 absorption of o-carboxymethylchitosan synthesised from chitosan. Environmental Chemistry Letters, 2018, 16(3): 1025–1031
https://doi.org/10.1007/s10311-018-0713-z
66 H Xie, S Zhang, S Li. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chemistry, 2006, 8(7): 630–633
https://doi.org/10.1039/b517297g
67 S Wang, W Zhao, T S Lee, S W Singer, B A Simmons, S Singh, Q Yuan, G Cheng. Dimethyl sulfoxide assisted ionic liquid pretreatment of switchgrass for isoprenol production. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4354–4361
https://doi.org/10.1021/acssuschemeng.7b04908
68 E Gale, R H Wirawan, R L Silveira, C S Pereira, M A Johns, M S Skaf, J L Scott. Directed discovery of greener cosolvents: new cosolvents for use in ionic liquid based organic electrolyte solutions for cellulose dissolution. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6200–6207
https://doi.org/10.1021/acssuschemeng.6b02020
69 A Alammar, R Hardian, G Szekely. Upcycling agricultural waste into membranes: from date seed biomass to oil and solvent-resistant nanofiltration. Green Chemistry, 2022, 24(1): 365–374
https://doi.org/10.1039/D1GC03410C
70 R G Yousuf, J B Winterburn. Date seed characterisation, substrate extraction and process modelling for the production of polyhydroxybutyrate by cupriavidus necator. Bioresource Technology, 2016, 222: 242–251
https://doi.org/10.1016/j.biortech.2016.09.107
71 R Hardian, A Alammar, T Holtzl, G Szekely. Fabrication of sustainable organic solvent nanofiltration membranes using cellulose−chitosan biopolymer blends. Journal of Membrane Science, 2022, 658: 120743
https://doi.org/10.1016/j.memsci.2022.120743
72 A A Shamsuri, K Abdan, S N A M Jamil. Properties and applications of cellulose regenerated from cellulose/imidazolium-based ionic liquid/co-solvent solutions: a short review. E-Polymers, 2021, 21(1): 869–880
https://doi.org/10.1515/epoly-2021-0086
73 D Hu, H Liu, Y Ding, W Ma. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydrate Polymers, 2021, 264: 118058
https://doi.org/10.1016/j.carbpol.2021.118058
74 P G Gan, S T Sam, M Abdullah, M F Omar. Thermal properties of nanocellulose-reinforced composites: a review. Journal of Applied Polymer Science, 2020, 137(11): 48544
https://doi.org/10.1002/app.48544
75 C Muñoz-Núñez, M Fernández-García, A Muñoz-Bonilla. Chitin nanocrystals: environmentally friendly materials for the development of bioactive films. Coatings, 2022, 12(2): 144
https://doi.org/10.3390/coatings12020144
76 Y Zhang, P Song, H Liu, Q Li, S Fu. Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(ε-caprolactone)/epoxy composites. Composites Science and Technology, 2016, 125: 62–70
https://doi.org/10.1016/j.compscitech.2016.01.008
77 F Ansari, L A Berglund. Toward semistructural cellulose nanocomposites: the need for scalable processing and interface tailoring. Biomacromolecules, 2018, 19(7): 2341–2350
https://doi.org/10.1021/acs.biomac.8b00142
78 S Parveen, S Rana, S Ferreira, A Filho, R Fangueiro. Ultrasonic dispersion of micro crystalline cellulose for developing cementitious composites with excellent strength and stiffness. Industrial Crops and Products, 2018, 122: 156–165
https://doi.org/10.1016/j.indcrop.2018.05.060
79 K Sakakibara, Y Moriki, H Yano, Y Tsujii. Strategy for the improvement of the mechanical properties of cellulose nanofiber-reinforced high-density polyethylene nanocomposites using diblock copolymer dispersants. ACS Applied Materials & Interfaces, 2017, 9(50): 44079–44087
https://doi.org/10.1021/acsami.7b13963
80 J Wang, Z Chen, A Guan, N R Demarquette, H E Naguib. Ionic liquids facilitated dispersion of chitin nanowhiskers for reinforced epoxy composites. Carbohydrate Polymers, 2020, 247: 116746
https://doi.org/10.1016/j.carbpol.2020.116746
81 X Song, L Zhou, B Ding, X Cui, Y Duan, J Zhang. Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids. Carbohydrate Polymers, 2018, 186: 252–259
https://doi.org/10.1016/j.carbpol.2018.01.055
82 H Koga, M Nogi, A Isogai. Ionic liquid mediated dispersion and support of functional molecules on cellulose fibers for stimuli-responsive chromic paper devices. ACS Applied Materials & Interfaces, 2017, 9(46): 40914–40920
https://doi.org/10.1021/acsami.7b14827
83 Y Liu, Y Wang, Y Nie, C Wang, X Ji, L Zhou, F Pan, S Zhang. Preparation of MWCNTS-graphene-cellulose fiber with ionic liquids. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20013–20021
https://doi.org/10.1021/acssuschemeng.9b05489
84 C S Jon, L Y Meng, D Li. Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends in Analytical Chemistry, 2019, 120: 115641
https://doi.org/10.1016/j.trac.2019.115641
85 M Tirumali, B Kandasubramanian, A Kumaraswamy, N K Subramani, B S Fabrication. physicochemical characterizations and electrical conductivity studies of modified carbon nanofiber-reinforced epoxy composites: effect of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Polymer-Plastics Technology and Engineering, 2018, 57(3): 218–228
https://doi.org/10.1080/03602559.2017.1320719
86 K Javed, A Krumme, M Viirsalu, I Krasnou, T Plamus, V Vassiljeva, E Tarasova, N Savest, A Mere, V Mikli, M Danilson, T Kaljuvee, S Lange, Q Yuan, P D Topham, C M Chen. A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon, 2018, 140: 148–156
https://doi.org/10.1016/j.carbon.2018.08.034
87 L Zhou, F Pan, S Zeng, Q Li, L Bai, Y Liu, Y Nie. Ionic liquid assisted fabrication of cellulose-based conductive films for Li-ion battery. Journal of Applied Polymer Science, 2020, 137(35): 49430
https://doi.org/10.1002/app.49430
88 B G Soares. Ionic liquid: a smart approach for developing conducting polymer composites: a review. Journal of Molecular Liquids, 2018, 262: 8–18
https://doi.org/10.1016/j.molliq.2018.04.049
89 N Singh, J Chen, K K Koziol, K R Hallam, D Janas, A J Patil, A G Strachan, J Hanley, S S Rahatekar. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale, 2016, 8(15): 8288–8299
https://doi.org/10.1039/C5NR06595J
90 R Wu, L Ma, C Hou, Z Meng, W Guo, W Yu, R Yu, F Hu, X Y Liu. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small, 2019, 15(31): 1901558
https://doi.org/10.1002/smll.201901558
91 W Wang, Y Nie, Y Liu, L Bai, J Gao, S Zhang. Preparation of cellulose/multi-walled carbon nanotube composite membranes with enhanced conductive property regulated by ionic liquids. Fibers and Polymers, 2017, 18(9): 1780–1789
https://doi.org/10.1007/s12221-017-7298-1
92 S Zhang, J Zhang, Y Zhang, Y Deng. Nanoconfined ionic liquids. Chemical Reviews, 2017, 117(10): 6755–6833
https://doi.org/10.1021/acs.chemrev.6b00509
93 L Migliorini, C Piazzoni, K Pohako-Esko, M Di Girolamo, A Vitaloni, F Borghi, T Santaniello, A Aabloo, P Milani. All-printed green micro-supercapacitors based on a natural-derived ionic liquid for flexible transient electronics. Advanced Functional Materials, 2021, 31(27): 2102180
https://doi.org/10.1002/adfm.202102180
94 D Li, X Fei, K Wang, L Xu, Y Wang, J Tian, Y Li. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. Journal of Materials Chemistry B, 2021, 9(34): 6844–6855
https://doi.org/10.1039/D1TB01257F
95 A Dhakshinamoorthy, A M Asiri, M Alvaro, H Garcia. Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20(1): 86–107
https://doi.org/10.1039/C7GC02260C
96 X Yao, S Zhang, L Qian, N Wei, V Nica, S Coseri, F Han. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Advanced Functional Materials, 2022, 32(33): 2204565
https://doi.org/10.1002/adfm.202204565
97 S Wei, Y C Ching, C H Chuah. Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydrate Polymers, 2020, 231: 115744
https://doi.org/10.1016/j.carbpol.2019.115744
98 C Rizzo, G Misia, S Marullo, F Billeci, F D’Anna. Bio-based chitosan and cellulose ionic liquid gels: polymeric soft materials for the desulfurization of fuel. Green Chemistry, 2022, 24(3): 1318–1334
https://doi.org/10.1039/D1GC02679H
99 S Li, S Dong, W Xu, S Tu, L Yan, C Zhao, J Ding, X Chen. Antibacterial hydrogels. Advancement of Science, 2018, 5(5): 1700527
100 Y Liang, Y Liang, H Zhang, B Guo. Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences, 2022, 17(3): 353–384
https://doi.org/10.1016/j.ajps.2022.01.001
101 J Qu, X Zhao, Y Liang, T Zhang, P X Ma, B Guo. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185–199
https://doi.org/10.1016/j.biomaterials.2018.08.044
102 Y Fan, M Lüchow, Y Zhang, J Lin, L Fortuin, S Mohanty, A Brauner, M Malkoch. Nanogel encapsulated hydrogels as advanced wound dressings for the controlled delivery of antibiotics. Advanced Functional Materials, 2021, 31(7): 2006453
https://doi.org/10.1002/adfm.202006453
103 F Wahid, C Zhong, H S Wang, X H Hu, L Q Chu. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers, 2017, 9(12): 636
https://doi.org/10.3390/polym9120636
104 Y R Gao, J F Cao, Y Shu, J H Wang. Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial. Green Chemical Engineering, 2021, 2(4): 368–383
https://doi.org/10.1016/j.gce.2021.07.012
105 L Serwecińska. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 2020, 12(12): 3313
https://doi.org/10.3390/w12123313
106 Y Yu, Z Yang, S Ren, Y Gao, L Zheng. Multifunctional hydrogel based on ionic liquid with antibacterial performance. Journal of Molecular Liquids, 2020, 299: 112185
https://doi.org/10.1016/j.molliq.2019.112185
107 J Pernak, K Czerniak, M Niemczak, Ł Ławniczak, D K Kaczmarek, A Borkowski, T Praczyk. Bioherbicidal ionic liquids. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2741–2750
https://doi.org/10.1021/acssuschemeng.7b04382
108 N Nikfarjam, M Ghomi, T Agarwal, M Hassanpour, E Sharifi, D Khorsandi, M Ali Khan, F Rossi, A Rossetti, E Nazarzadeh Zare, N Rabiee, D Afshar, M Vosough, T Kumar Maiti, V Mattoli, E Lichtfouse, F R Tay, P Makvandi. Antimicrobial ionic liquid-based materials for biomedical applications. Advanced Functional Materials, 2021, 31(42): 2104148
https://doi.org/10.1002/adfm.202104148
109 A M Curreri, S Mitragotri, E E L Tanner. Recent advances in ionic liquids in biomedicine. Advanced Science, 2021, 8(17): 2004819
https://doi.org/10.1002/advs.202004819
110 A Eftekhari, T Saito. Synthesis and properties of polymerized ionic liquids. European Polymer Journal, 2017, 90: 245–272
https://doi.org/10.1016/j.eurpolymj.2017.03.033
111 H Zhao, S Ren, I Zucker, Y Bai, Y Wang. Antibiofouling polyvinylidene fluoride membrane functionalized by poly(ionic liquid) brushes via atom transfer radical polymerization. ACS ES&T Engineering, 2022, 2(7): 1239–1249
112 X Qu, Y Zhao, Z Chen, S Wang, Y Ren, Q Wang, J Shao, W Wang, X Dong. Thermoresponsive lignin-reinforced poly(ionic liquid) hydrogel wireless strain sensor. Research, 2021, 2021: 9845482
https://doi.org/10.34133/2021/9845482
113 J W Heo, J Chen, M S Kim, J W Kim, Z Zhang, H Jeong, Y S Kim. Eco-friendly and facile preparation of chitosan-based biofilms of novel acetoacetylated lignin for antioxidant and UV-shielding properties. International Journal of Biological Macromolecules, 2023, 225: 1384–1393
https://doi.org/10.1016/j.ijbiomac.2022.11.196
114 L Shao, Y Li, Z Ma, Y Bai, J Wang, P Zeng, P Gong, F Shi, Z Ji, Y Qiao, R Xu, J Xu, G Zhang, C Wang, J Ma. Highly sensitive strain sensor based on a stretchable and conductive poly(vinyl alcohol)/phytic acid/NH2-POSS hydrogel with a 3D microporous structure. ACS Applied Materials & Interfaces, 2020, 12(23): 26496–26508
https://doi.org/10.1021/acsami.0c07717
115 T Chen, P Wei, G Chen, H Liu, I T Mugaanire, K Hou, M Zhu. Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 2021, 9(20): 12265–12275
https://doi.org/10.1039/D1TA02422A
116 Y Zhang, A MohebbiPour, J Mao, J Mao, Y Ni. Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications. International Journal of Biological Macromolecules, 2021, 193: 941–947
https://doi.org/10.1016/j.ijbiomac.2021.10.159
117 C Chen, Y Wang, T Zhou, Z Wan, Q Yang, Z Xu, D Li, Y Jin. Toward strong and tough wood-based hydrogels for sensors. Biomacromolecules, 2021, 22(12): 5204–5213
https://doi.org/10.1021/acs.biomac.1c01141
118 I P Moreira, C Esteves, S I C J Palma, E Ramou, A L M Carvalho, A C A Roque. Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Materials Today. Bio, 2022, 15: 100290
https://doi.org/10.1016/j.mtbio.2022.100290
119 T Zia, M Usman, A Sabir, M Shafiq, R U Khan. Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. International Journal of Biological Macromolecules, 2020, 157: 83–95
https://doi.org/10.1016/j.ijbiomac.2020.04.157
120 J P Serra, N Pereira, D M Correia, C R Tubio, J L Vilas-Vilela, C M Costa, S Lanceros-Mendez. Carrageenan-based hybrid materials with ionic liquids for sustainable and recyclable printable pressure sensors. ACS Sustainable Chemistry & Engineering, 2022, 10(26): 8631–8640
https://doi.org/10.1021/acssuschemeng.2c02374
121 J Xu, G Wang, Y Wu, X Ren, G Gao. Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Applied Materials & Interfaces, 2019, 11(28): 25613–25623
https://doi.org/10.1021/acsami.9b08369
122 Z Ren, T Ke, Q Ling, L Zhao, H Gu. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydrate Polymers, 2021, 273: 118533
https://doi.org/10.1016/j.carbpol.2021.118533
123 Y Chen, D Diaz-Dussan, D Wu, W Wang, Y Y Peng, A B Asha, D G Hall, K Ishihara, R Narain. Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation. ACS Macro Letters, 2018, 7(8): 904–908
https://doi.org/10.1021/acsmacrolett.8b00434
124 M Chen, J Tian, Y Liu, H Cao, R Li, J Wang, J Wu, Q Zhang. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chemical Engineering Journal, 2019, 373: 413–424
https://doi.org/10.1016/j.cej.2019.05.043
125 C Xu, W Zhan, X Tang, F Mo, L Fu, B Lin. Self-healing chitosan/vanillin hydrogels based on schiff-base bond/hydrogen bond hybrid linkages. Polymer Testing, 2018, 66: 155–163
https://doi.org/10.1016/j.polymertesting.2018.01.016
126 X Yang, G Liu, L Peng, J Guo, L Tao, J Yuan, C Chang, Y Wei, L Zhang. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Advanced Functional Materials, 2017, 27(40): 1703174
https://doi.org/10.1002/adfm.201703174
127 Y Gong, D Li, C Luo, Q Fu, C Pan. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry, 2017, 19(17): 4132–4140
https://doi.org/10.1039/C7GC01681F
128 J Han, J H Kwon, J W Lee, J H Lee, K C Roh. An effective approach to preparing partially graphitic activated carbon derived from structurally separated pitch pine biomass. Carbon, 2017, 118: 431–437
https://doi.org/10.1016/j.carbon.2017.03.076
129 S E M Pourhosseini, O Norouzi, P Salimi, H R Naderi. Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4746–4758
https://doi.org/10.1021/acssuschemeng.7b03871
130 Y Ren, J Guo, Z Liu, Z Sun, Y Wu, L Liu, F Yan. Ionic liquid-based click-ionogels. Science Advances, 2019, 5(8): eaax0648
https://doi.org/10.1126/sciadv.aax0648
131 Y Wang, Q Qu, S Gao, G Tang, K Liu, S He, C Huang. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 2019, 155: 706–726
https://doi.org/10.1016/j.carbon.2019.09.018
132 M Sajjad, R Tao, L Qiu. Phosphine based covalent organic framework as an advanced electrode material for electrochemical energy storage. Journal of Materials Science Materials in Electronics, 2021, 32(2): 1602–1615
https://doi.org/10.1007/s10854-020-04929-9
133 Y Chen, Z Liu, L Sun, Z Lu, K Zhuo. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. Journal of Power Sources, 2018, 390: 215–223
https://doi.org/10.1016/j.jpowsour.2018.04.057
134 G Dhakal, D Mohapatra, Y I Kim, J Lee, W K Kim, J J Shim. High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste. Renewable Energy, 2022, 189: 587–600
https://doi.org/10.1016/j.renene.2022.01.105
135 M Liu, X Wang, Y Jiang, J Sun, M Arai. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. Catalysis Reviews. Science and Engineering, 2019, 61(2): 214–269
https://doi.org/10.1080/01614940.2018.1550243
136 M Ding, R W Flaig, H L Jiang, O M Yaghi. Carbon capture and conversion using metal-organic frameworks and mof-based materials. Chemical Society Reviews, 2019, 48(10): 2783–2828
https://doi.org/10.1039/C8CS00829A
137 T Sharma, S Sharma, H Kamyab, A Kumar. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: a review. Journal of Cleaner Production, 2020, 247: 119138
https://doi.org/10.1016/j.jclepro.2019.119138
138 Y Wang, J Nie, C Lu, F Wang, C Ma, Z Chen, G Yang. Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates. Microporous and Mesoporous Materials, 2020, 292: 109751
https://doi.org/10.1016/j.micromeso.2019.109751
139 A Siewniak, A Forajter, K Szymańska. Mesoporous silica-supported ionic liquids as catalysts for styrene carbonate synthesis from CO2. Catalysts, 2020, 10(11): 1363
https://doi.org/10.3390/catal10111363
140 J Zhu, S Wang, Y Gu, B Xue, Y Li. A new and efficient method of graphene oxide immobilized with ionic liquids: promoted catalytic activity for CO2 cycloaddition. Materials Chemistry and Physics, 2018, 208: 68–76
https://doi.org/10.1016/j.matchemphys.2018.01.031
141 J Sun, J Wang, W Cheng, J Zhang, X Li, S Zhang, Y She. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chemistry, 2012, 14(3): 654–660
https://doi.org/10.1039/c2gc16335g
142 X Wu, M Wang, Y Xie, C Chen, K Li, M Yuan, X Zhao, Z Hou. Carboxymethyl cellulose supported ionic liquid as a heterogeneous catalyst for the cycloaddition of CO2 to cyclic carbonate. Applied Catalysis A: General, 2016, 519: 146–154
https://doi.org/10.1016/j.apcata.2016.04.002
143 Y Zhang, Y Zhang, B Chen, L Qin, G Gao. Swelling poly(ionic liquid)s: heterogeneous catalysts that are superior than homogeneous catalyst for ethylene carbonate transformation. ChemistrySelect, 2017, 2(29): 9443–9449
https://doi.org/10.1002/slct.201702081
144 W Ge, J Shuai, Y Wang, Y Zhou, X Wang. Progress on chemical modification of cellulose in “green” solvents. Polymer Chemistry, 2022, 13(3): 359–372
https://doi.org/10.1039/D1PY00879J
145 T J Szalaty, Ł Klapiszewski, T Jesionowski. Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials—a review. Journal of Molecular Liquids, 2020, 301: 112417
https://doi.org/10.1016/j.molliq.2019.112417
146 Y R Wang, C C Yin, J M Zhang, J Wu, J Yu, J Zhang. Functional cellulose materials fabricated by using ionic liquids as the solvent. Chinese Journal of Polymer Science, 2022, 40: 1–17
147 K Müller, C Zollfrank, M Schmid. Natural polymers from biomass resources as feedstocks for thermoplastic materials. Macromolecular Materials and Engineering, 2019, 304(5): 1800760
https://doi.org/10.1002/mame.201800760
148 N A Chudasama, R A Sequeira, K Moradiya, K Prasad. Seaweed polysaccharide based products and materials: an assessment on their production from a sustainability point of view. Molecules, 2021, 26(9): 2608
https://doi.org/10.3390/molecules26092608
149 W M Argüelles-Monal, J Lizardi-Mendoza, D Fernández-Quiroz, M T Recillas-Mota, M Montiel-Herrera. Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers, 2018, 10(3): 342
https://doi.org/10.3390/polym10030342
150 M J Trujillo-Rodríguez, H Nan, M Varona, M N Emaus, I D Souza, J L Anderson. Advances of ionic liquids in analytical chemistry. Analytical Chemistry, 2019, 91(1): 505–531
https://doi.org/10.1021/acs.analchem.8b04710
151 H Ohno, M Yoshizawa-Fujita, Y Kohno. Functional design of ionic liquids: unprecedented liquids that contribute to energy technology, bioscience, and materials sciences. Bulletin of the Chemical Society of Japan, 2019, 92(4): 852–868
https://doi.org/10.1246/bcsj.20180401
152 Y Zhu, Z Yu, J Zhu, Y Zhang, X Ren, F Jiang. Developing flame-retardant lignocellulosic nanofibrils through reactive deep eutectic solvent treatment for thermal insulation. Chemical Engineering Journal, 2022, 445: 136748
https://doi.org/10.1016/j.cej.2022.136748
153 O Zabihi, M Ahmadi, R Yadav, R Mahmoodi, E Naderi Kalali, S Nikafshar, M R Ghandehari Ferdowsi, D Y Wang, M Naebe. Novel phosphorous-based deep eutectic solvents for the production of recyclable macadamia nutshell-polymer biocomposites with improved mechanical and fire safety performances. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4463–4476
https://doi.org/10.1021/acssuschemeng.0c08447
154 K Al Hokayem, R El Hage, L Svecova, B Otazaghine, N Le Moigne, R Sonnier. Flame retardant-functionalized cotton cellulose using phosphonate-based ionic liquids. Molecules, 2020, 25(7): 1629
https://doi.org/10.3390/molecules25071629
155 R Nishita, K Kuroda, S Suzuki, K Ninomiya, K Takahashi. Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution. Polymer Journal, 2019, 51(8): 781–789
https://doi.org/10.1038/s41428-019-0195-2
156 A P Abbott, G Capper, D L Davies, R K Rasheed, V Tambyrajah. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003, (1): 70–71
https://doi.org/10.1039/b210714g
157 B B Hansen, S Spittle, B Chen, D Poe, Y Zhang, J M Klein, A Horton, L Adhikari, T Zelovich, B W Doherty, B Gurkan, E J Maginn, A Ragauskas, M Dadmun, T A Zawodzinski, G A Baker, M E Tuckerman, R F Savinell, J R Sangoro. Deep eutectic solvents: a review of fundamentals and applications. Chemical Reviews, 2021, 121(3): 1232–1285
https://doi.org/10.1021/acs.chemrev.0c00385
158 Y M Wang, M Feng, B He, X Y Chen, J L Zeng, J Sun. Ionothermal synthesis of carbon dots from cellulose in deep eutectic solvent: a sensitive probe for detecting Cu2+ and glutathione with “off-on” pattern. Applied Surface Science, 2022, 599: 153705
https://doi.org/10.1016/j.apsusc.2022.153705
159 M H Zainal-Abidin, M Hayyan, G C Ngoh, W F Wong. Doxorubicin loading on functional graphene as a promising nanocarrier using ternary deep eutectic solvent systems. ACS Omega, 2020, 5(3): 1656–1668
https://doi.org/10.1021/acsomega.9b03709
160 R Reshmy, D Thomas, E Philip, S A Paul, A Madhavan, R Sindhu, P Binod, A Pugazhendhi, R Sirohi, A Tarafdar, A Pandey. Potential of nanocellulose for wastewater treatment. Chemosphere, 2021, 281: 130738
https://doi.org/10.1016/j.chemosphere.2021.130738
161 E Mascheroni, R Rampazzo, M A Ortenzi, G Piva, S Bonetti, L Piergiovanni. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose, 2016, 23(1): 779–793
https://doi.org/10.1007/s10570-015-0853-2
162 R Batmaz, N Mohammed, M Zaman, G Minhas, R M Berry, K C Tam. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose, 2014, 21(3): 1655–1665
https://doi.org/10.1007/s10570-014-0168-8
163 J A Sirviö, J Ukkola, H Liimatainen. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose, 2019, 26(4): 2303–2316
https://doi.org/10.1007/s10570-019-02257-8
164 S Liu, Q Zhang, S Gou, L Zhang, Z Wang. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydrate Polymers, 2021, 251: 117018
https://doi.org/10.1016/j.carbpol.2020.117018
165 Z Yang, T A Asoh, H Uyama. Cationic functionalization of cellulose monoliths using a urea-choline based deep eutectic solvent and their applications. Polymer Degradation & Stability, 2019, 160: 126–135
https://doi.org/10.1016/j.polymdegradstab.2018.12.015
[1] Andrew Nattestad, Klaudia Wagner, Gordon G. Wallace. Scale up of reactors for carbon dioxide reduction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 116-122.
[2] Xing Feng, Meiqing Du, Hongbei Wei, Xiaoxiao Ruan, Tao Fu, Jie Zhang, Xiaolong Sun. Chemically triggered life control of “smart” hydrogels through click and declick reactions[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1399-1406.
[3] Xin Li, Meng Su, Yao Chen, Mehar U. Nisa, Ning Zhao, Xiangning Jiang, Zhenhua Li. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
[4] Yong-Hui Wen, Long Cheng, Tian-Ming Xu, Xing-Hai Liu, Ning-Jie Wu. Synthesis, insecticidal activities and DFT study of pyrimidin-4-amine derivatives containing the 1,2,4-oxadiazole motif[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1090-1100.
[5] Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
[6] Quirin Göttl, Dominik G. Grimm, Jakob Burger. Automated synthesis of steady-state continuous processes using reinforcement learning[J]. Front. Chem. Sci. Eng., 2022, 16(2): 288-302.
[7] Yachao Dong, Christos Georgakis, Jacob Santos-Marques, Jian Du. Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J]. Front. Chem. Sci. Eng., 2022, 16(2): 221-236.
[8] Qilei Liu, Yinke Jiang, Lei Zhang, Jian Du. A computational toolbox for molecular property prediction based on quantum mechanics and quantitative structure-property relationship[J]. Front. Chem. Sci. Eng., 2022, 16(2): 152-167.
[9] Folin Liu, Shaohua Feng, Siyuan Xiu, Bin Yang, Yang Hou, Lecheng Lei, Zhongjian Li. Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1761-1771.
[10] Yongxin Zhang, Shucheng Wang, Yaodong Huang. A highly efficient methodology for the preparation of N-methoxycarbazoles and the total synthesis of 3,3'-[oxybis(methylene)]bis(9-methoxy-9H-carbazole)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 679-686.
[11] Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review[J]. Front. Chem. Sci. Eng., 2021, 15(2): 221-237.
[12] Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity[J]. Front. Chem. Sci. Eng., 2021, 15(2): 299-309.
[13] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[14] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[15] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed