Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (7) : 1090-1100    https://doi.org/10.1007/s11705-021-2091-5
RESEARCH ARTICLE
Synthesis, insecticidal activities and DFT study of pyrimidin-4-amine derivatives containing the 1,2,4-oxadiazole motif
Yong-Hui Wen1,2, Long Cheng1,2, Tian-Ming Xu2, Xing-Hai Liu1(), Ning-Jie Wu2()
1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China
 Download: PDF(798 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Twenty six novel pyrimidin-4-amine derivatives containing the 1,2,4-oxadiazole motif were synthesized. Their chemical structures were confirmed by 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrography. The insecticidal activity results indicated that some of them possessed excellent insecticidal activity (100%) against Mythimna separate, especially for compounds 6d, 6f, 6o, 6w, 6y and 6z. These compounds exhibited no activity against the insects Aphis medicagini and Tetranychus cinnabarinus. The structure- insecticidal activity relationships are discussed. Density functional theory analysis can potentially be used to design more active compounds. These results provide useful insecticide design information for further optimization.

Keywords synthesis      pyrimidin-4-amine derivatives      1,2,4-oxadiazole      insecticidal activity      structure-activity relationship     
Corresponding Author(s): Xing-Hai Liu,Ning-Jie Wu   
Online First Date: 04 November 2021    Issue Date: 15 July 2022
 Cite this article:   
Yong-Hui Wen,Long Cheng,Tian-Ming Xu, et al. Synthesis, insecticidal activities and DFT study of pyrimidin-4-amine derivatives containing the 1,2,4-oxadiazole motif[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1090-1100.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2091-5
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I7/1090
Fig.1  The design strategy of new pyrimidinamine derivatives.
  Scheme 1 The synthesis of key pyrimidine intermediates e1–e8.
  Scheme 2 The synthetic route of title pyrimidinamine compounds.
No. Mythimna separate Tetranychus cinnabarinus Aphis medicagini
500 100 500 500
6a 80 0 0 0
6b 80 0 0 0
6c 80 0 0 0
6d 100 0 0 0
6e 80 0 0 0
6f 100 0 0 0
6g 70 0 0
6h 0 0 0
6i 0 0 0
6j 70 0 0
6k 70 0 0 0
6l 80 0 0 0
6m 0 0 0
6n 0 0 0
6o 100 0 0 0
6p 0 0 0
6q 0 0 0
6r 40 0 0
6s 0 0 0
6t 40 0 0
6u 60 0 0
6v 80 0 0 0
6w 100 0 0 0
6x 80 0 0 0
6y 100 0 0 0
6z 100 0 0 0
Flufenerim 100 100 100 100
Tab.1  The insecticidal activity of synthesized compounds against three insects (mg?L–1)
Fig.2  The intramolecular hydrogen bonds between the NH and halogen atoms of 6d.
Energy Flufenerim 6d
Etotal/Hartree –1678.6354 –4044.7107
EHOMO/Hartree –0.2320 –0.1947
ELUMO/Hartree –0.0325 –0.0979
ΔEa/Hartree 0.1995 0.0968
TPSA 47.05 83.06
ClogP 5.04 3.87
Tab.2  Total energy and frontier orbital energy of flufenerim and 6d
Fig.3  The HOMO and LUMO of 6d and flufenerim.
1 J L Yang, A Y Guan, Z N Li, P F Zhang, C L Liu. Design, synthesis, and structure-activity relationship of novel spiropyrimidinamines as fungicides against pseudoperonospora cubensis. Journal of Agricultural and Food Chemistry, 2020, 68(24): 6485–6492
https://doi.org/10.1021/acs.jafc.9b07055
2 W K Guo, Y J Xing, Q S Zhang, J Q Xie, D X Huang, H J Gu, P He, M R Zhou, S F Xu, X F Pang, et al. Synthesis and biological evaluation of B-cell lymphoma 6 inhibitors of N-phenyl-4-pyrimidinamine derivatives bearing potent activities against tumor growth. Journal of Medicinal Chemistry, 2020, 63(2): 676–695
https://doi.org/10.1021/acs.jmedchem.9b01618
3 K N Mohana, L Mallesha. Synthesis and in vitro biological activity of N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine derivatives. Bulgarian Chemical Communications, 2011, 43: 395–400
4 N N Soliman, M A Salam, A A Fadda, M Abdel-Motaal. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, spodoptera littoralis. Journal of Agricultural and Food Chemistry, 2020, 68(21): 5790–5805
https://doi.org/10.1021/acs.jafc.9b06394
5 N Zhang, M Z Huang, A P Liu, M H Liu, L Z Li, C G Zhou, Y G Ren, X M Ou, C Y Long, J Sun, M M Dang, Z L Lan. Design, synthesis, and insecticidal/acaricidal evaluation of novel pyrimidinamine derivatives containing phenyloxazole moiety. Chemical Papers, 2020, 74(3): 963–970
https://doi.org/10.1007/s11696-019-00932-5
6 D G Wishka, D R Graber, L A Kopta, R A Olmsted, J M Friis, J D Hosley, W J Adams, E P Seest, T M Castle, L A Dolak, et al.. (-)-6-Chloro-2-[(1-furo[2,3-c]pyridin-5-yl-ethyl)thio]-4-pyrimidinamine, PNU-142721, a new broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitor. Journal of Medicinal Chemistry, 1998, 41(9): 1357–1360
https://doi.org/10.1021/jm9801049
7 D Marcic. Acaricides in modern management of plant-feeding mites. Journal of Pest Science, 2012, 85(4): 395–408
https://doi.org/10.1007/s10340-012-0442-1
8 Y Zhang, J F Shang, H Li, H Liu, H B Song, B L Wang, Z M Li. Synthesis of novel N-pyridylpyrazole derivatives containing 1,2,4-oxadiazole moiety via 1,3-dipolar cycloaddition and their structures and biological activities. Chinese Chemical Letters, 2020, 31(5): 1276–1280
https://doi.org/10.1016/j.cclet.2019.10.039
9 J Zhang, J C Li, J L Song, Z Q Cheng, J Z Sun, C S Jiang. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. Asian Journal of Nature Product Research, 2019, 21(11): 1090–1103
https://doi.org/10.1080/10286020.2018.1492566
10 X D Cao, Z Y Yao, F Dou, Y F Zhang, Y L Qiu, S Zhao, X Q Xu, X Liu, B F Liu, Y Chen, G Zhang. Synthesis and biological evaluation of sigma-1 (sigma(1)) receptor ligands based on phenyl-1,2,4-oxadiazole derivatives. Chemistry & Biodiversity, 2019, 16(3): e1800599
https://doi.org/10.1002/cbdv.201800599
11 M Vijaya Bhargavi, P Shashikala, M Sumakanth, C Krishna. Synthesis, molecular docking, analgesic, and anti-inflammatory activities of new 1,2,4-oxadiazolo-sulfonamides. Russian Journal of General Chemistry, 2018, 88(4): 804–811
https://doi.org/10.1134/S1070363218040278
12 A E El Mansouri, A Oubella, M Maatallah, M Y AitItto, M Zahouily, H Morjani, H B Lazrek. Design, synthesis, biological evaluation and molecular docking of new uracil analogs-1,2,4-oxadiazole hybrids as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters, 2020, 30(19): 127438
https://doi.org/10.1016/j.bmcl.2020.127438
13 B Ravinaik, D Ramachandran, M V B Rao. Design, synthesis and anticancer evaluation of 1,2,4-oxadiazole bearing isoxazole-pyrazole derivatives. Letters in Organic Chemistry, 2020, 17(5): 352–359
https://doi.org/10.2174/1570178616666190725090906
14 M Mohammadi-Khanaposhtani, K Fahimi, E Karimpour-Razkenari, M Safavi, M Mahdavi, M Saeedi, T Akbarzadeh. Design, synthesis and cytotoxicity of novel coumarin-1,2,3-triazole-1,2,4-oxadiazole hybrids as potent anti-breast cancer agents. Letters in Drug Design & Discovery, 2019, 16(7): 818–824
https://doi.org/10.2174/1570180815666180627121006
15 F Benmansour, C Eydoux, G Querat, X de Lamballerie, B Canard, K Alvarez, J C Guillemot, K Barral. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. European Journal of Medicinal Chemistry, 2016, 109: 146–156
https://doi.org/10.1016/j.ejmech.2015.12.046
16 R E Avanzo, J M Padron, N B D’Accorso, M L Fascio. Synthesis and in vitro antiproliferative activities of (5-ary1-1,2,4-oxadiazole-3-y1) methyl D-ribofuranosides. Bioorganic & Medicinal Chemistry Letters, 2017, 27(16): 3674–3677
https://doi.org/10.1016/j.bmcl.2017.07.015
17 F S Cunha, J M R Nogueira, A P de Aguiar. Synthesis and antibacterial evaluation of 3,5-diaryl-1,2,4-oxadiazole derivatives. Journal of the Brazilian Chemical Society, 2018, 29: 2405–2416
https://doi.org/10.21577/0103-5053.20180118
18 J M Santos, D M A D E Silva, T S Macedo, H M P Teixeira, D R M Moreira, S Challal, J L Wolfender, E F Queiroz, M B P Soares. Conjugation of N-acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorganic & Medicinal Chemistry, 2016, 24(22): 5693–5701
https://doi.org/10.1016/j.bmc.2016.09.013
19 Z H Shen, Z H Sun, J J Becnel, A Estep, D E Wedge, C X Tan, J Q Weng, L Han, X H Liu. Synthesis and mosquiticidal activity of novel hydrazone containing pyrimidine derivatives against Aedes aegypti. Letters in Drug Design & Discovery, 2018, 15(9): 951–956
https://doi.org/10.2174/1570180815666180102141640
20 X H Liu, Y H Wen, L Cheng, T M Xu, N J Wu. Design, synthesis, pesticidal activities of pyrimidin-4-amine derivatives bearing a 5-(trifluoromethyl)-1,2,4-oxadiazole moiety. Journal of Agricultural and Food Chemistry, 2021, 69(25): 6968–6980
https://doi.org/10.1021/acs.jafc.1c00236
21 S L Chen, Y Zhang, Y X Liu, Q M Wang. Highly efficient synthesis and acaricidal and insecticidal activities of novel oxazolines with N-heterocyclic substituents. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3601–3606
https://doi.org/10.1021/acs.jafc.0c05558
22 Q Fu, P P Cai, L Cheng, L K Zhong, C X Tan, Z H Shen, L Han, X H Liu. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Management Science, 2020, 76(3): 868–879
https://doi.org/10.1002/ps.5591
23 X H Liu, W Yu, L J Min, D E Wedge, C X Tan, J Q Weng, H K Wu, C L Cantrell, J Bajsa-Hischel, X W Hua, et al.. Synthesis and pesticidal activities of new quinoxalines. Journal of Agricultural and Food Chemistry, 2020, 68(28): 7324–7332
https://doi.org/10.1021/acs.jafc.0c01042
24 T J Hoffman, D Stierli, M Pouliot, R. Beaudegnies Microbiocidal oxadiazole derivatives. WO Patent, 2017072247A1, 2017-05-04
25 Y Zhang, J F Shang, H Li, H Liu, H B Song, B L Wang, Z M Li. Synthesis of novel N-pyridylpyrazole derivatives containing 1,2,4-oxadiazole moiety via 1,3-dipolar cycloaddition and their structures and biological activities. Chinese Chemical Letters, 2020, 31(5): 1276–1280
https://doi.org/10.1016/j.cclet.2019.10.039
26 C S Yu, Q Wang, J Bajsa-Hirschel, C Cantrell, S O Duke, X H Liu. Synthesis, crystal structure, herbicidal activity and SAR study of novel N-(arylmethoxy)-2-chloronicotinamides derived from nicotinic acid. Journal of Agricultural and Food Chemistry, 2021, 69(23): 6423–6430
https://doi.org/10.1021/acs.jafc.0c07538
27 G F Hao, Q Dong, G F Yang. Comparative study on the constitutive properties of marketed pesticides. Molecular Informatics, 2011, 30(6-7): 614–622
https://doi.org/10.1002/minf.201100020
28 H Rao, F C Huang, Y Wang, X Wang, T Tang, X Zeng, Z Li, Y Chen. Physicochemical profiles of the marketed agrochemicals and clues for agrochemical lead discovery and screening library development. Molecular Informatics, 2015, 34(5): 331–338
https://doi.org/10.1002/minf.201400143
[1] Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
[2] Quirin Göttl, Dominik G. Grimm, Jakob Burger. Automated synthesis of steady-state continuous processes using reinforcement learning[J]. Front. Chem. Sci. Eng., 2022, 16(2): 288-302.
[3] Yachao Dong, Christos Georgakis, Jacob Santos-Marques, Jian Du. Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J]. Front. Chem. Sci. Eng., 2022, 16(2): 221-236.
[4] Yongxin Zhang, Shucheng Wang, Yaodong Huang. A highly efficient methodology for the preparation of N-methoxycarbazoles and the total synthesis of 3,3'-[oxybis(methylene)]bis(9-methoxy-9H-carbazole)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 679-686.
[5] Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review[J]. Front. Chem. Sci. Eng., 2021, 15(2): 221-237.
[6] Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity[J]. Front. Chem. Sci. Eng., 2021, 15(2): 299-309.
[7] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[8] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[9] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[10] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[11] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[12] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[13] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[14] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[15] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed