Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (9) : 1399-1406    https://doi.org/10.1007/s11705-022-2149-z
COMMUNICATION
Chemically triggered life control of “smart” hydrogels through click and declick reactions
Xing Feng1, Meiqing Du1, Hongbei Wei1, Xiaoxiao Ruan1, Tao Fu1, Jie Zhang2(), Xiaolong Sun1()
1. Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2. The Fourth Military Medical University, Xi’an 710032, China
 Download: PDF(2752 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The degradation of polymeric materials is recognized as one of the goals to be fulfilled for the sustainable economy. In this study, a novel methodology was presented to synthesize multiple highly cross-linked polymers (i.e., hydrogels) through amine–thiol scrambling under mild conditions. Amine-terminated poly(ethylene glycol) (PEG-NH2) was reacted with the representative conjugate acceptors to synthesize hydrogels in organic and aqueous solutions, respectively. The materials above exhibited high water-swelling properties, distributed porous structures, as well as prominent mechanical strengths. It is noteworthy that the mentioned hydrogels could be degraded efficiently in hours to release the original coupling partner, which were induced by ethylene diamine at ambient temperature through amine-amine metathesis. The recovered PEG-NH2 reagent could be employed again to regenerate hydrogels. Due to the multiple architectures and functions in polymeric synthesis, degradation and regeneration, a new generation of “smart” materials is revealed.

Keywords hydrogels      degradation      synthesis      regeneration     
Corresponding Author(s): Jie Zhang,Xiaolong Sun   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 22 April 2022    Issue Date: 20 September 2022
 Cite this article:   
Xing Feng,Meiqing Du,Hongbei Wei, et al. Chemically triggered life control of “smart” hydrogels through click and declick reactions[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1399-1406.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2149-z
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I9/1399
Fig.1  Recycling of soft materials through “amine–thiol coupling and amine–amine decoupling” reactions: materials of synthesis through the reactions between CAs 1, 2, 3 and 4-PEG amine 4 with releasing methyl mercaptan (CH3SH); EDA-induced decoupling to release the original amine partner 4 and five-membered ring product 5, 6, 7. The recyclable monomer was employed again to regenerate soft materials.
Fig.2  (a) Formation of A-1, -2, -3 in acetonitrile; (b) Swelling properties for A-1, -2, -3 in water, size changes and swelling ratios; (c) SEM images for A-1, -2, -3. M = 15 k; (d) Raman spectra for A-1, -2, -3; (e) Storage modulus (G') and loss modulus (G'') for swelled A-1, -2, -3; (f) Stress-strain tension test for swelled A-1, -2, -3; (g) Maximum force, tensile strength and elastic modulus test for swelled A-1, -2, -3.
Fig.3  (a) Hydrogel formation for W-1, -2, -3 in water (10% acetonitrile as co-solvent) over time; (b) Swelling properties of W-1, -2 and -3 in water, size changes and swelling ratios; (c) SEM images of W-1, -2 and -3 after the swelling and the lyophilization. M = 15 k; (d) Raman spectra for W-1, -2 and -3; (e) Storage modulus (G') and loss modulus (G'') for W-1, -2 and -3 after the swelling; (f) Stress-strain tension test for W-1, -2 and -3 after the swelling; (g) Maximal force, tensile strength and elastic modulus test for the swelled samples of W-1, -2 and 3.
Property A-1 A-2 A-3 W-1 W-2 W-3
Gelation time 27 min 5 min 3 min 30 h 63 h 51 h
Swelling ratio 5.7 4.5 4.9 6.2 6.8 7.5
Pore size/μm 2–3 5 2–3 3–4 6 3–4
Storage modulus/kPa 48 46 61 23 34 48
Tensile strength/kPa 59.3 95.5 116.7 104.2 125.2 129.3
Elastic modulus/kPa 66.4 127.6 107.4 89.3 107.4 132.1
Crosslinking density 18.62 17.85 23.67 8.92 13.19 18.62
Tab.1  Comparison of hydrogels properties
Fig.4  (a) Degradation of all materials by EDA (Initial status of materials (left dishes); residue of materials after degradation for a certain amount of time (middle dishes); clear solutions after complete degradation (right dishes)); (b) Kinetics of degradation for all materials in EDA through measuring weight.
Fig.5  (a) Proton NMR for started and recycled 4-PEG amine in CDCl3; (b) GPC for started and recycled 4-PEG amine in DMF; (c) Storage modulus (G') and loss modulus (G'') for ReA-1, -2, -3 after the swelling in the mode of time scan. Inset photos: regeneration of materials by using recycled 4-PEG amine in acetonitrile.
Property A-1 A-2 A-3 ReA-1 ReA-2 ReA-3
Gelation time 27 min 5 min 3 min 90 min 40 min 10 min
Storage modulus/kPa 48 46 61 9.8 14 84.3
Tensile strength/kPa 59.3 95.5 116.7 21.7 40.1 83.9
Elastic modulus/kPa 66.4 127.6 107.4 38.3 63.2 84.3
Crosslinking density 18.62 17.85 23.67 3.8 5.43 8.54
Tab.2  Comparison of properties of A-1, -2, -3 and ReA-1, -2, -3
1 X Liu, J Liu, S Lin, X Zhao. Hydrogel machines. Materials Today, 2020, 36( 25): 102– 124
https://doi.org/10.1016/j.mattod.2019.12.026
2 L A Hockaday, K H Kang, N W Colangelo, P Y Cheung, B Duan, E Malone, J Wu, L N Girardi, L J Bonassar, H Lipson. et al.. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 2012, 4( 3): 035005– 035017
https://doi.org/10.1088/1758-5082/4/3/035005
3 S J Buwalda, K W Boere, P J Dijkstra, J Feijen, T Vermonden, W E Hennink. Hydrogels in a historical perspective: from simple networks to smart materials. Journal of Controlled Release, 2014, 190( 21): 254– 273
https://doi.org/10.1016/j.jconrel.2014.03.052
4 A Perez-San Vicente, M Peroglio, M Ernst, P Casuso, I Loinaz, H J Grande, M Alini, D Eglin, D Dupin. Self-healing dynamic hydrogel as injectable shock-absorbing artificial nucleus pulposus. Biomacromolecules, 2017, 18( 8): 2360– 2370
https://doi.org/10.1021/acs.biomac.7b00566
5 H Cheng, K Yue, M Kazemzadeh-Narbat, Y Liu, A Khalilpour, B Li, Y S Zhang, N Annabi, A Khademhosseini. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Applied Materials & Interfaces, 2017, 9( 13): 11428– 11439
https://doi.org/10.1021/acsami.6b16779
6 X Zhao, H Wu, B Guo, R Dong, Y Qiu, P X Ma. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122( 4): 34– 47
https://doi.org/10.1016/j.biomaterials.2017.01.011
7 J Li, D J Mooney. Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1( 12): 1– 17
https://doi.org/10.1038/natrevmats.2016.71
8 M Choi, J W Choi, S Kim, S Nizamoglu, S K Hahn, S H Yun. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nature Photonics, 2013, 7( 12): 987– 994
https://doi.org/10.1038/nphoton.2013.278
9 L Xu, K Chen, G Q Chen, S E Kentish, G Li. Development of barium@alginate adsorbents for sulfate removal in lithium refining. Frontiers of Chemical Science and Engineering, 2020, 15( 1): 198– 207
https://doi.org/10.1007/s11705-020-1968-z
10 Y Huang, H Li, X He, X Yang, L Li, S Liu, Z Zou, K Wang, J Liu. Near-infrared photothermal release of hydrogen sulfide from nanocomposite hydrogels for anti-inflammation applications. Chinese Chemical Letters, 2020, 31( 3): 787– 791
https://doi.org/10.1016/j.cclet.2019.05.025
11 Y Guo, J Bae, Z Fang, P Li, F Zhao, G Yu. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews, 2020, 120( 15): 7642– 7707
https://doi.org/10.1021/acs.chemrev.0c00345
12 M Choi, M Humar, S Kim, S H Yun. Step-index optical fiber made of biocompatible hydrogels. Advanced Materials, 2015, 27( 17): 4081– 4086
https://doi.org/10.1002/adma.201501603
13 D Yan, S Liu, Y G Jia, L Mo, D Qi, J Wang, Y Chen, L Ren. Responsive polypseudorotaxane hydrogels triggered by a compatible stimulus of CO2. Macromolecular Chemistry and Physics, 2019, 220( 12): 1900071– 1900076
https://doi.org/10.1002/macp.201900071
14 E Chalmers, Y Li, X Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity. Frontiers of Chemical Science and Engineering, 2019, 13( 4): 684– 694
https://doi.org/10.1007/s11705-019-1817-0
15 C Yang, Z Suo. Hydrogel ionotronics. Nature Reviews Materials, 2018, 3( 6): 125– 142
https://doi.org/10.1038/s41578-018-0018-7
16 H Arslan, A Nojoomi, J Jeon, K 3rd Yum. Printing of anisotropic hydrogels with bioinspired motion. Advancement of Science, 2019, 6( 2): 1800703– 1800711
https://doi.org/10.1002/advs.201800703
17 Y Gao, S Gu, F Jia, G Gao. A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. Journal of Materials Chemistry A, 2020, 8( 45): 24175– 24183
https://doi.org/10.1039/D0TA07883B
18 S Correa, A K Grosskopf, H Lopez Hernandez, D Chan, A C Yu, L M Stapleton, E A Appel. Translational applications of hydrogels. Chemical Reviews, 2021, 18( 14): 11385– 11457
https://doi.org/10.1021/acs.chemrev.0c01177
19 J Glowacki, S Mizuno. Collagen scaffolds for tissue engineering. Biopolymers, 2008, 89( 5): 338– 344
https://doi.org/10.1002/bip.20871
20 M A Haque, T Kurokawa, J P Gong. Super tough double network hydrogels and their application as biomaterials. Polymer, 2012, 53( 9): 1805– 1822
https://doi.org/10.1016/j.polymer.2012.03.013
21 Y Yue, X Wang, Q Wu, J Han, J Jiang. Highly recyclable and super-tough hydrogel mediated by dual-functional TiO2 nanoparticles toward efficient photodegradation of organic water pollutants. Journal of Colloid and Interface Science, 2020, 564( 5): 99– 112
https://doi.org/10.1016/j.jcis.2019.12.069
22 Y Liu, Q Sun, X Yang, J Liang, B Wang, A Koo, R Li, J Li, X Sun. High-performance and recyclable Al-air coin cells based on eco-friendly chitosan hydrogel membranes. ACS Applied Materials & Interfaces, 2018, 10( 23): 19730– 19738
https://doi.org/10.1021/acsami.8b04974
23 T Yuan, X Qu, X Cui, J Sun. Self-healing and recyclable hydrogels reinforced with in situ-formed organic nanofibrils exhibit simultaneously enhanced mechanical strength and stretchability. ACS Applied Materials & Interfaces, 2019, 11( 35): 32346– 32353
https://doi.org/10.1021/acsami.9b08208
24 A Chamas, H Moon, J Zheng, Y Qiu, T Tabassum, J H Jang, M Abu-Omar, S L Scott, S Suh. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 2020, 8( 9): 3494– 3511
https://doi.org/10.1021/acssuschemeng.9b06635
25 V Delplace, J Nicolas. Degradable vinyl polymers for biomedical applications. Nature Chemistry, 2015, 7( 10): 771– 784
https://doi.org/10.1038/nchem.2343
26 A Ben Cheikh, J Chuche, N Manisse, J C Pommelet, K P Netsch, P Lorencak, C Wentrup. Synthesis of α-cyano carbonyl compounds by flash vacuum thermolysis of (alkylamino)methylene derivatives of meldrum’s acid. Evidence for facile 1,3-shifts of alkylamino and alkylthio groups in imidoylketene intermediates. Journal of Organic Chemistry, 1991, 56( 3): 970– 975
https://doi.org/10.1021/jo00003a014
27 K Sweidan, Q Abu-Salem, A Al-Sheikh, G Sheikha. Novel derivatives of 1,3-dimethyl-5-methylenebarbituric acid. Letters in Organic Chemistry, 2009, 6( 8): 669– 672
https://doi.org/10.2174/157017809790442934
28 B M El-Zaatari, J S A Ishibashi, J A Kalow. Cross-linker control of vitrimer flow. Polymer Chemistry, 2020, 11( 33): 5339– 5345
https://doi.org/10.1039/D0PY00233J
29 K L Diehl, I V Kolesnichenko, S A Robotham, J L Bachman, Y Zhong, J S Brodbelt, E V Anslyn. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor. Nature Chemistry, 2016, 8( 10): 968– 973
https://doi.org/10.1038/nchem.2601
30 M K Meadows, X Sun, I V Kolesnichenko, C M Hinson, K A Johnson, E V Anslyn. Mechanistic studies of a “declick” reaction. Chemical Science (Cambridge), 2019, 10( 38): 8817– 8824
https://doi.org/10.1039/C9SC00690G
31 X Sun, M Chwatko, D H Lee, J L Bachman, J F Reuther, N A Lynd, E V Anslyn. Chemically triggered synthesis, remodeling, and degradation of soft materials. Journal of the American Chemical Society, 2020, 142( 8): 3913– 3922
https://doi.org/10.1021/jacs.9b12122
32 L Chang, C Wang, S Han, X Sun, F Xu. Chemically triggered hydrogel transformations through covalent adaptable networks and applications in cell culture. ACS Macro Letters, 2021, 10( 7): 901– 906
https://doi.org/10.1021/acsmacrolett.1c00276
33 T Wu, T Liang, W Hu, M Du, S Zhang, Y Zhang, E V Anslyn, X Sun. Chemically triggered click and declick reactions: application in synthesis and degradation of thermosetting plastics. ACS Macro Letters, 2021, 10( 9): 1125– 1131
https://doi.org/10.1021/acsmacrolett.1c00548
34 Y Fang, J Xu, F Gao, X Du, Z Du, X Cheng, H Wang. Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor. Composites Part B: Engineering, 2021, 219( 22): 108965– 108974
https://doi.org/10.1016/j.compositesb.2021.108965
[1] FCE-21083-OF-FX_suppl_1 Download
[1] Xin Li, Meng Su, Yao Chen, Mehar U. Nisa, Ning Zhao, Xiangning Jiang, Zhenhua Li. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
[2] Jianxin Chen, Yupeng Li, Jihui Li, Jian Han, Guijun Zhu, Liang Ren. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1125-1138.
[3] Yong-Hui Wen, Long Cheng, Tian-Ming Xu, Xing-Hai Liu, Ning-Jie Wu. Synthesis, insecticidal activities and DFT study of pyrimidin-4-amine derivatives containing the 1,2,4-oxadiazole motif[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1090-1100.
[4] Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
[5] Quirin Göttl, Dominik G. Grimm, Jakob Burger. Automated synthesis of steady-state continuous processes using reinforcement learning[J]. Front. Chem. Sci. Eng., 2022, 16(2): 288-302.
[6] Yachao Dong, Christos Georgakis, Jacob Santos-Marques, Jian Du. Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis[J]. Front. Chem. Sci. Eng., 2022, 16(2): 221-236.
[7] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
[8] Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment[J]. Front. Chem. Sci. Eng., 2021, 15(4): 872-881.
[9] Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light[J]. Front. Chem. Sci. Eng., 2021, 15(4): 892-901.
[10] Yongxin Zhang, Shucheng Wang, Yaodong Huang. A highly efficient methodology for the preparation of N-methoxycarbazoles and the total synthesis of 3,3'-[oxybis(methylene)]bis(9-methoxy-9H-carbazole)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 679-686.
[11] Jin Zhao, Qing-Xi Wu, Xiao-Du Cheng, Ting Su, Xiao-Hui Wang, Wen-Na Zhang, Yong-Ming Lu, Yan Chen. Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus[J]. Front. Chem. Sci. Eng., 2021, 15(2): 421-436.
[12] Simin Feng, Xiaoli Zhang, Dunyun Shi, Zheng Wang. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review[J]. Front. Chem. Sci. Eng., 2021, 15(2): 221-237.
[13] Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity[J]. Front. Chem. Sci. Eng., 2021, 15(2): 299-309.
[14] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[15] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed