Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (12) : 1761-1771    https://doi.org/10.1007/s11705-022-2195-6
RESEARCH ARTICLE
Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis
Folin Liu1, Shaohua Feng1, Siyuan Xiu1, Bin Yang1,2, Yang Hou1,2, Lecheng Lei1,2, Zhongjian Li1,2,3()
1. College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
2. Institute of Zhejiang University—Quzhou, Quzhou 324000, China
3. Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
 Download: PDF(6051 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.

Keywords microbial electrosynthesis      hydrogen evolution reaction      metalloporphyrins      biocompatibility      CO2 conversion     
Corresponding Author(s): Zhongjian Li   
Online First Date: 09 October 2022    Issue Date: 19 December 2022
 Cite this article:   
Folin Liu,Shaohua Feng,Siyuan Xiu, et al. Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1761-1771.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2195-6
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I12/1761
Fig.1  (a) Schematic illustration of the fabrication procedures for M@PTF; (b) LSV curves; (c) corresponding Tafel slopes of M@PTF (M = Fe, Co, Ni, Cu) in MM without IR correction.
Fig.2  (a) TEM image and (b) elemental mapping images of Co, C, N, and O, (c) XRD pattern, (d) FTIR spectrum, (e) Raman spectrum, (f) N2 adsorption–desorption isotherm and pore size distribution (inset) of Co@PTF.
Fig.3  (a) XPS survey spectrum and high-resolution XPS spectra of (b) Co 2p, (c) N 1s and (d) C 1s of Co@PTF.
Fig.4  Concentration of (a) ·O2, (b) H2O2, (c) ·OH of Co@PTF using SS and Co@PTF as cathode at the current density of –1 mA·cm–2 (Error bars denote SEM, n = 3). (d) H2O2 yield, n and LSV curve for ORR (inset) of Co@PTF obtained from RRDE measurements.
Fig.5  (a) Spot assays of Co@PTF and SS before starting electrolysis (0 h), after 3 and 24 h of electrolysis at the current density of –1 mA·cm–2. (b) Growth curves of the MES systems equipped with Co@PTF and SS as the cathodes at current densities of –1, –2 and –4 mA·cm–2. (c) Dissolution concentration of Co in the electrolyte of Co@PTF and spot assays of C. necator for different concentrations of Co2+ (inset). (All the samples of spot assays were grown on plates with different dilution factors. Error bars denote SEM, n = 3).
Fig.6  The profiles of (a) OD600 and (b) concentration of PHB. (c) Proportion of PHB in chemicals and (d) ECE during MES systems operation under the current density of –6 mA·cm–2 equipped with Co@PTF and SS (Error bars denote SEM, n = 3). (e) LSV curves and Tafel slopes (inset) of Co@PTF before and after MES system operation. (f) LSV curves and Tafel slopes (inset) of SS before and after MES system operation.
1 D Shindell, C J Smith. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature, 2019, 573( 7774): 408– 411
https://doi.org/10.1038/s41586-019-1554-z
2 G P Peters, R M Andrew, J G Canadell, P Friedlingstein, R B Jackson, J I Korsbakken, Quéré C Le, A Peregon. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 2020, 10( 1): 3– 6
https://doi.org/10.1038/s41558-019-0659-6
3 G H Rau, H D Willauer, Z J Ren. The global potential for converting renewable electricity to negative-CO2-emissions hydrogen. Nature Climate Change, 2018, 8( 7): 621– 625
https://doi.org/10.1038/s41558-018-0203-0
4 Y L Yan, T N Borhani, S G Subraveti, K N Pai, V Prasad, A Rajendran, P Nkulikiyinka, J O Asibor, Z E Zhang, D Shao, L Wang, W Zhang, Y Yan, W Ampomah, J You, M Wang, E J Anthony, V Manovic, P T Clough. Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS)—a state-of-the-art review. Energy & Environmental Science, 2021, 14( 12): 6122– 6157
https://doi.org/10.1039/D1EE02395K
5 X Fang, S Kalathil, E Reisner. Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 2020, 49( 14): 4926– 4952
https://doi.org/10.1039/C9CS00496C
6 A Prévoteau, J M Carvajal-Arroyo, R Ganigué, K Rabaey. Microbial electrosynthesis from CO2: forever a promise?. Current Opinion in Biotechnology, 2020, 62 : 48– 57
https://doi.org/10.1016/j.copbio.2019.08.014
7 E Perona-Vico, L Feliu-Paradeda, S Puig, L Bañeras. Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis. Scientific Reports, 2020, 10( 1): 19852
https://doi.org/10.1038/s41598-020-76694-y
8 H Li, P H Opgenorth, D G Wernick, S Rogers, T Y Wu, W Higashide, P Malati, Y X Huo, K M Cho, J C Liao. Integrated electromicrobial conversion of CO2 to higher alcohols. Science, 2012, 335( 6076): 1596
https://doi.org/10.1126/science.1217643
9 T Krieg, A Sydow, S Faust, I Huth, D Holtmann. CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angewandte Chemie International Edition, 2018, 57( 7): 1879– 1882
https://doi.org/10.1002/anie.201711302
10 K K Sakimoto, A B Wong, P D Yang. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 351( 6268): 74– 77
https://doi.org/10.1126/science.aad3317
11 S Y Xiu, J N Yao, G M Wu, Y M Huang, B Yang, Y Huang, L C Lei, Z J Li, Y Hou. Hydrogen-mediated electron transfer in hybrid microbial-inorganic systems and application in energy and the environment. Energy Technology (Weinheim), 2019, 7( 8): 1800987
https://doi.org/10.1002/ente.201800987
12 C Liu, B C Colón, M Ziesack, P A Silver, D G Nocera. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 2016, 352( 6290): 1210– 1213
https://doi.org/10.1126/science.aaf5039
13 M Wang, W Zhong, S S Zhang, R J Liu, J M Xing, G J Zhang. An overall water-splitting polyoxometalate catalyst for the electromicrobial conversion of CO2 in neutral water. Journal of Materials Chemistry A, 2018, 6( 21): 9915– 9921
https://doi.org/10.1039/C8TA01902A
14 R M Rodrigues, X Guan, J A Iñiguez, D A Estabrook, J O Chapman, S Y Huang, E M Sletten, C Liu. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nature Catalysis, 2019, 2( 5): 407– 414
https://doi.org/10.1038/s41929-019-0264-0
15 K K Sakimoto, N Kornienko, S Cestellos-Blanco, J Lim, C Liu, P D Yang. Physical biology of the materials—microorganism interface. Journal of the American Chemical Society, 2018, 140( 6): 1978– 1985
https://doi.org/10.1021/jacs.7b11135
16 J P Torella, C J Gagliardi, J S Chen, D K Bediako, B Colón, J C Way, P A Silver, D G Nocera. Efficient solar-to-fuels production from a hybrid microbial—water-splitting catalyst system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112( 8): 2337– 2342
https://doi.org/10.1073/pnas.1424872112
17 N Singh, M A Savanur, S Srivastava, P D’Silva, G Mugesh. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angewandte Chemie International Edition, 2017, 56( 45): 14267– 14271
https://doi.org/10.1002/anie.201708573
18 Y Liu, X Cao, J Ge. Antioxidative composites based on multienzyme systems encapsulated in metal−organic frameworks. ACS Applied Materials & Interfaces, 2021, 13( 39): 46431– 46439
https://doi.org/10.1021/acsami.1c15506
19 Z Abdi, S E Balaghi, A S Sologubenko, M G Willinger, M Vandichel, J R Shen, S I Allakhverdiev, G R Patzke, M M Najafpour. Understanding the dynamics of molecular water oxidation catalysts with liquid-phase transmission electron microscopy: the case of Vitamin B12. ACS Sustainable Chemistry & Engineering, 2021, 9( 28): 9494– 9505
https://doi.org/10.1021/acssuschemeng.1c03539
20 Y N Slavin, J Asnis, U O Häfeli, H Bach. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 2017, 15( 1): 65
https://doi.org/10.1186/s12951-017-0308-z
21 B Bian, S Bajracharya, J Xu, D Pant, P E Saikaly. Microbial electrosynthesis from CO2: challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresource Technology, 2020, 302 : 122863
https://doi.org/10.1016/j.biortech.2020.122863
22 J D Yi, R Xu, G L Chai, T Zhang, K T Zang, B Nan, H Lin, Y L Liang, J Q Lv, J Luo, R Si, Y B Huang, R Cao. Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2019, 7( 3): 1252– 1259
https://doi.org/10.1039/C8TA09490J
23 C Ayed, W Huang, K A Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media. Frontiers of Chemical Science and Engineering, 2020, 14( 3): 397– 404
https://doi.org/10.1007/s11705-019-1884-2
24 Z H Xiang, Y H Xue, D P Cao, L Huang, J F Chen, L M Dai. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angewandte Chemie International Edition, 2014, 53( 9): 2433– 2437
https://doi.org/10.1002/anie.201308896
25 J L Liu, Y J Hu, J J Cao. Covalent triazine-based frameworks as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Catalysis Communications, 2015, 66 : 91– 94
https://doi.org/10.1016/j.catcom.2015.03.027
26 Á García, M Retuerto, C Dominguez, L Pascual, P Ferrer, D Gianolio, A Serrano, P Aßmann, D G Sanchez, M A Peña, S Rojas. Fe doped porous triazine as efficient electrocatalysts for the oxygen reduction reaction in acid electrolyte. Applied Catalysis B: Environmental, 2020, 264 : 118507
https://doi.org/10.1016/j.apcatb.2019.118507
27 H Y Zhuo, X Zhang, J X Liang, Q Yu, H Xiao, J Li. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chemical Reviews, 2020, 120( 21): 12315– 12341
https://doi.org/10.1021/acs.chemrev.0c00818
28 S H Feng, W Z Zheng, J K Zhu, Z J Li, B Yang, Z H Wen, J G Lu, L C Lei, S B Wang, Y Hou. Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2020, 270 : 118908
https://doi.org/10.1016/j.apcatb.2020.118908
29 A Alarawi, V Ramalingam, J H He. Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Materials Today. Energy, 2019, 11 : 1– 23
https://doi.org/10.1016/j.mtener.2018.10.014
30 C Gao, J X Low, R Long, T T Kong, J F Zhu, Y J Xiong. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chemical Reviews, 2020, 120( 21): 12175– 12216
https://doi.org/10.1021/acs.chemrev.9b00840
31 E V LaBelle, C W Marshall, H D May. Microbiome for the electrosynthesis of chemicals from carbon dioxide. Accounts of Chemical Research, 2020, 53( 1): 62– 71
https://doi.org/10.1021/acs.accounts.9b00522
32 R F Zhou, Y Zheng, M Jaroniec, S Z Qiao. Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catalysis, 2016, 6( 7): 4720– 4728
https://doi.org/10.1021/acscatal.6b01581
33 J Yao, Y Cheng, M Zhou, S Zhao, S C Lin, X Y Wang, J J X Wu, S R Li, H Wei. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chemical Science (Cambridge), 2018, 9( 11): 2927– 2933
https://doi.org/10.1039/C7SC05476A
34 M Chen, X F Zhou, X Y Chen, Q H Cai, R J X Zeng, S G Zhou. Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Water Research, 2020, 172 : 115501
https://doi.org/10.1016/j.watres.2020.115501
35 J W Huang, Y Su, Y D Zhang, W Q Wu, C Y Wu, Y H Sun, R F Lu, G F Zou, Y R Li, J Xiong. FeOx/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: insight into interface. Journal of Materials Chemistry A, 2018, 6( 20): 9467– 9472
https://doi.org/10.1039/C8TA02204F
36 Y W Tan, M Luo, P Liu, C Cheng, J H Han, K Watanabe, M W Chen. Three-dimensional nanoporous Co9S4P4 pentlandite as a bifunctional electrocatalyst for overall neutral water splitting. ACS Applied Materials & Interfaces, 2019, 11( 4): 3880– 3888
https://doi.org/10.1021/acsami.8b17961
37 N Wang, G Cheng, L P Guo, B E Tan, S B Jin. Hollow covalent triazine frameworks with variable shell thickness and morphology. Advanced Functional Materials, 2019, 29( 43): 1904781
https://doi.org/10.1002/adfm.201904781
38 K Dai, T P Hu, J F Zhang, L H Lu. Carbon nanotube exfoliated porous reduced graphene oxide/CdS-diethylenetriamine heterojunction for efficient photocatalytic H2 production. Applied Surface Science, 2020, 512 : 144783
https://doi.org/10.1016/j.apsusc.2019.144783
39 Y Zheng, S Chen, H Song, H Guo, K A I Zhang, C Zhang, T Liu. Nitrogen-doped hollow carbon nanoflowers from a preformed covalent triazine framework for metal-free bifunctional electrocatalysis. Nanoscale, 2020, 12( 27): 14441– 14447
https://doi.org/10.1039/D0NR04346J
40 M Lu, Y J Qian, C C Yang, X Huang, H Li, X J Xie, L Huang, W Huang. Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy, 2017, 32 : 382– 388
https://doi.org/10.1016/j.nanoen.2016.12.046
41 Y P Zhu, J J Li, Y B Chen, J Zou, Q Q Cheng, C Chen, W B Hu, L L Zou, Z Q Zou, B Yang, H Yang. Switching the oxygen reduction reaction pathway via tailoring the electronic structure of FeN4/C catalysts. ACS Catalysis, 2021, 11( 21): 13020– 13027
https://doi.org/10.1021/acscatal.1c03728
42 B Ball, C Chakravarty, P Sarkar. Silicon and phosphorus Co-doped bipyridine-linked covalent triazine framework as a promising metal-free catalyst for hydrogen evolution reaction: a theoretical investigation. Journal of Physical Chemistry Letters, 2020, 11( 4): 1542– 1549
https://doi.org/10.1021/acs.jpclett.9b03876
43 A Pohlmann, W F Fricke, F Reinecke, B Kusian, H Liesegang, R Cramm, T Eitinger, C Ewering, M Pötter, E Schwartz, A Strittmatter, I Voß, G Gottschalk, A Steinbüchel, B Friedrich, B Bowien. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nature Biotechnology, 2006, 24( 10): 1257– 1262
https://doi.org/10.1038/nbt1244
44 P Fernández-Castro, M Vallejo, Román M F San, I Ortiz. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. Journal of Chemical Technology and Biotechnology, 2015, 90( 5): 796– 820
https://doi.org/10.1002/jctb.4634
45 Y Nosaka, A Y Nosaka. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 2017, 117( 17): 11302– 11336
https://doi.org/10.1021/acs.chemrev.7b00161
46 Y Liu, Y Zhao, J L Wang. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects. Journal of Hazardous Materials, 2021, 404 : 124191
https://doi.org/10.1016/j.jhazmat.2020.124191
47 Y Li, W Zhang, J F Niu, Y S Chen. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6( 6): 5164– 5173
https://doi.org/10.1021/nn300934k
48 Y Li, J H Huang, X Hu, L L Bi, P W Cai, J C Jia, G L Chai, S Q Wei, L M Dai, Z H Wen. Fe vacancies induced surface FeO6 in nanoarchitectures of N-doped graphene protected β-FeOOH: effective active sites for pH-universal electrocatalytic oxygen reduction. Advanced Functional Materials, 2018, 28( 34): 1803330
https://doi.org/10.1002/adfm.201803330
[1] FCE-22023-OF-LF_suppl_1 Download
[1] Vishal Kandathil, Akshay Moolakkil, Pranav Kulkarni, Alaap Kumizhi Veetil, Manjunatha Kempasiddaiah, Sasidhar Balappa Somappa, R. Geetha Balakrishna, Siddappa A. Patil. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1514-1525.
[2] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[3] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[4] Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong. Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1134-1146.
[5] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[6] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[7] Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
[8] Merve İzmir, Batur Ercan. Anodization of titanium alloys for orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 28-45.
[9] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[10] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[11] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[12] Kaojin Wang, Satu Strandman, X. X. Zhu. A mini review: Shape memory polymers for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(2): 143-153.
[13] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[14] Xiaoguang BAI, Yuanbin SHE. Selective epoxidation of linear terminal olefins with metalloporphyrins under mild conditions[J]. Front Chem Eng Chin, 2009, 3(3): 310-313.
[15] Jing FAN, Yuanbin SHE, Aixin WANG. Study on a green synthetic method of TRPPMCl (M= Fe, Mn, Co)[J]. Front Chem Eng Chin, 2009, 3(2): 222-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed