Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (1) : 123-131    https://doi.org/10.1007/s11705-014-1415-0
RESEARCH ARTICLE
Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution
Stefania MOIOLI1, Laura A. PELLEGRINI1(), Simone GAMBA1, Ben LI2
1. Department of Chemistry, Materials and Chemical Engineering “G. Natta”, I-20133 Milano, Italy
2. School of Chemical Engineering, University of Science and Technology, Anshan 114051, China
 Download: PDF(167 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper focuses on modeling and simulation of a post-combustion carbon dioxide capture in a coal-fired power plant by chemical absorption using monoethanolamine. The aim is to obtain a reliable tool for process simulation: a customized rate-based model has been developed and implemented in the ASPEN Plus® software, along with regressed parameters for the Electrolyte-NRTL model worked out in a previous research. The model is validated by comparison with experimental data of a pilot plant and can provide simulation results very close to experimental data.

Keywords Absorption      carbon dioxide capture      rate-based model      monoethanolamine scrubbing     
Corresponding Author(s): Laura A. PELLEGRINI   
Issue Date: 05 March 2014
 Cite this article:   
Stefania MOIOLI,Laura A. PELLEGRINI,Simone GAMBA, et al. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution[J]. Front. Chem. Sci. Eng., 2014, 8(1): 123-131.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1415-0
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/123
Test (Dugas, 2006) Experimental data ASPEN Plus® default Eq. (19) Our model
y CO2 OUT y CO2 OUT % Absolute error y CO2OUT % Absolute error y CO2 OUT % Absolute error
29 0.0532 0.04619 13.18 0.01704 67.97 0.05156 3.08
30 0.0591 0.05022 15.03 0.02381 59.71 0.05558 5.96
43 0.0558 0.04698 15.81 0.03328 40.36 0.05238 6.13
44 0.054 0.04655 13.80 0.03252 39.78 0.05203 3.65
47 0.0638 0.06682 4.73 0.06312 1.07 0.06753 5.85
48 0.0619 0.06339 2.41 0.05893 4.80 0.06374 2.97
AAD /% AAD /% AAD /%
10.82 35.61 4.61
Tab.1  CO2 mole fraction in the purified gas
Case # 29 30 43
Stream gas IN lean IN gas IN lean IN gas IN lean IN
T /K 324.14 313.15 324.69 313.15 326.66 313.15
P/atm 1.041 1.68 1.042 1.68 1.033 1.68
F /(kmol·h−1) 25.8845 140.4958 25.7748 140.3816 25.4119 100.7471
Mole frac.
H2O 0.0164 0.8457 0.0163 0.8458 0.0163 0.8512
MEA 0 0.1201 0 0.1201 0 0.1209
CO2 0.1618 0.0342 0.1708 0.0341 0.1696 0.0279
O2 0.0484 0 0.0479 0 0.0479 0
N2 0.7734 0 0.7651 0 0.7662 0
Case # 44 47 48
Stream gas IN lean IN gas IN lean IN gas IN lean IN
T/K 324.74 313.15 332.38 313.15 329.1 313.15
P/atm 1.033 1.68 1.02 1.68 1.016 1.68
F/(kmol·h−1) 25.6271 101.1571 18.4596 77.3766 18.6061 77.0594
Mole frac.
H2O 0.0163 0.8512 0.0160 0.8461 0.0162 0.8457
MEA 0 0.1209 0 0.1202 0 0.1201
CO2 0.1680 0.0279 0.1841 0.0338 0.1763 0.0342
O2 0.0480 0 0.0471 0 0.0476 0
N2 0.7677 0 0.7528 0 0.7600 0
Tab.2  Experimental data of the streams entering the absorption column for different cases
Fig.1  Experimental data [39] and temperature profile along the absorption column for the case # 44 reported in Table 2
Fig.2  Experimental data [39] and temperature profile along the absorption column for the case # 47 reported in Table 2
Fig.3  Molar flow profile of carbon dioxide in the vapor phase along the absorption column for the case # 44 reported in Table 2
Fig.4  Molar flow profile of carbon dioxide in the vapor phase along the absorption column for the case # 47 reported in Table 2
[ ] Concentration, kmol/m3
a Activity
DCO2 Diffusivity of carbon dioxide in the solvent, m2/s
E Eddy diffusivity, m2/s
F Molar flow, kmol/h
k Kinetic constant, m3/(kmol·s)
kl° Mass transfer coefficient of liquid film, m/s
Ka, CO2 Equilibrium constant for the hydrolysis of dissolved carbon dioxide
Ka, HCO3 Equilibrium constant for the dissociation of bicarbonate ion
Ka, MEAH+ Equilibrium constant for the dissociation of protonated MEA
Kcarb Equilibrium constant for the dissociation of carbammate
KH2O Equilibrium constant for the dissociation of water
NCO2 Flux of carbon dioxide, kmol/(m2·s)
P Pressure, bar
R Rate of reaction, kmol/(m3·s), or universal gas constant in Eq. (13) and in Eq. (14)
T Temperature, K
x Distance from the interface
  Nomenclature
ε ε coefficient for Eddy diffusivity
γCO 2 Activity coefficient of carbon dioxide
δ δ film thickness, m
  Greek letters
* Equilibrium
  Superscripts
c Kinetic
eq Equilibrium
i Interfacial
  Subscripts
1 NOAA. 2013. NOAA website
2 UNO. Kyoto Protocol to the United Nations Framework Convention on Climate Change, 1998
3 A L Kohl, R Nielsen. Gas Purification, 5th ed. Texas: Gulf Publishing Company, Book Division, 1997
4 M Wang, A Lawal, P Stephenson, J Sidders, C Ramshaw. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research & Design, 2011, 89(9): 1609−1624
https://doi.org/10.1016/j.cherd.2010.11.005
5 D F Bergman, L Yarborough. In: 71st Annual Meeting of AIChE, Miami Beach, Florida, 1978
6 S Moioli, L A Pellegrini. Regeneration section of CO2 capture plant by MEA scrubbing with a rate-based model. Chemical Engineering Transactions, 2013, 32: 1849−1854
7 R L Kent, B Eisenberg. Better data for amine treating. Hydrocarbon Processing, 1976, 55: 87−90
8 N A Al-Baghli, S A Pruess, V F Yesavage, M S Selim. A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA. Fluid Phase Equilibria, 2001, 185(1−2): 31−43
https://doi.org/10.1016/S0378-3812(01)00454-X
9 H P Mangalapally, R Notz, S Hoch, N Asprion, G Sieder, H Garcia, H Hasse. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia, 2009, 1(1): 963−970
https://doi.org/10.1016/j.egypro.2009.01.128
10 L Kucka, I Müller, E Y Kenig, A Górak. On the modelling and simulation of sour gas absorption by aqueous amine solutions. Chemical Engineering Science, 2003, 58(16): 3571−3578
https://doi.org/10.1016/S0009-2509(03)00255-0
11 S Freguia, G T Rochelle. Modeling of CO2 capture by aqueous monoethanolamine. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(7): 1676−1686
https://doi.org/10.1002/aic.690490708
12 C J King. Turbolent liquid phase mass transfer at a free gas-liquid interface. Industrial & Engineering Chemistry Fundamentals, 1966, 5(1): 1−8
https://doi.org/10.1021/i160017a001
13 AspenTech. ASPEN Plus®, Burlington. MA: AspenTech, 2010
14 L A Pellegrini, S Moioli, S Gamba. Energy saving in a CO2 capture plant by MEA scrubbing. Chemical Engineering Research & Design, 2011, 89(9 9A): 1676−1683
https://doi.org/10.1016/j.cherd.2010.09.024
15 T J Edwards, G Maurer, J Newman, J M Prausnitz. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE Journal. American Institute of Chemical Engineers, 1978, 24(6): 966−976
https://doi.org/10.1002/aic.690240605
16 H Hikita, S Asai, H Ishikawa, M Honda. The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method. Chemical Engineering Journal, 1977, 13(1): 7−12
https://doi.org/10.1016/0300-9467(77)80002-6
17 B R W Pinsent, L Pearson, F W J Roughton. The kinetics of combination of carbon dioxide with hydroxide ions. Transactions of the Faraday Society, 1956, 52: 1512−1518
https://doi.org/10.1039/tf9565201512
18 L A Pellegrini, S Moioli, B Picutti, P Vergani, S Gamba. Design of an acidic natural gas purification plant by means of a process simulator. Chemical Engineering Transactions, 2011, 24: 271−276
19 L A Pellegrini, S Moioli, S Gamba, P Ceragioli. Prediction of vapor–liquid equilibrium for reservoir mixtures with cubic equations of state: binary interaction parameters for acidic gases. Fluid Phase Equilibria, 2012, 326: 45−49
https://doi.org/10.1016/j.fluid.2012.03.030
20 G De Guido, S Langè, S Moioli, L A Pellegrini. Thermodynamic method for the prediction of solid CO2 formation from multicomponent mixtures. Process Safety and Environmental Protection, 2014, 92(1): 70−79
21 L A Pellegrini, S Langé, S Moioli, B Picutti, P Vergani. Influence of gas impurities on thermodynamics of amine solutions. 1. Aromatics. Industrial & Engineering Chemistry Research, 2013, 52(5): 2018−2024
https://doi.org/10.1021/ie302827h
22 S Langé, L A Pellegrini, S Moioli, B Picutti, P Vergani. Influence of gas impurities on thermodynamics of amine solutions. 2. Mercaptans. Industrial & Engineering Chemistry Research, 2013, 52(5): 2025−2031
https://doi.org/10.1021/ie302829d
23 S Gamba, G S Soave, L A Pellegrini. Use of normal boiling point correlations for predicting critical parameters of paraffins for vapour-liquid equilibrium calculations with the SRK equation of state. Fluid Phase Equilibria, 2009, 276(2): 133−141
https://doi.org/10.1016/j.fluid.2008.10.014
24 L A Pellegrini, S Gamba, S Bonomi, V Calemma. Equilibrium constants for isomerization of n-paraffins. Industrial & Engineering Chemistry Research, 2007, 46(16): 5446−5452
https://doi.org/10.1021/ie0705204
25 L A Pellegrini, S Gamba, S Moioli. Using an adaptive parameter method for process simulation of nonideal systems. Industrial & Engineering Chemistry Research, 2010, 49(10): 4923−4932
https://doi.org/10.1021/ie901773q
26 B A Oyenekan, G T Rochelle. Energy performance of stripper configurations for CO2 capture by aqueous amines. Industrial & Engineering Chemistry Research, 2005, 45(8): 2457−2464
https://doi.org/10.1021/ie050548k
27 S Moioli, L A Pellegrini, S Gamba. Simulation of CO2 capture by MEA scrubbing with a rate-based model. In: 20th International Congress of Chemical and Process Engineering CHISA 2012, Prague, Czech Republic, 2012
28 G Soave. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 1972, 27(6): 1197−1203
https://doi.org/10.1016/0009-2509(72)80096-4
29 C C Chen, H I Britt, J F Boston, L B Evans. Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE Journal. American Institute of Chemical Engineers, 1979, 25(5): 820−831
https://doi.org/10.1002/aic.690250510
30 C C Chen, H I Britt, J F Boston, L B Evans. Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1982, 28(4): 588−596
https://doi.org/10.1002/aic.690280410
31 C C Chen, L B Evans. A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1986, 32(3): 444−454
https://doi.org/10.1002/aic.690320311
32 B Mock, L B Evans, C C Chen. Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1986, 32(10): 1655−1664
https://doi.org/10.1002/aic.690321009
33 F Y Jou, A E Mather, F D Otto. The Solubility of CO2 in a 30-mass-percent monoethanolamine solution. Canadian Journal of Chemical Engineering, 1995, 73(1): 140−147
https://doi.org/10.1002/cjce.5450730116
34 S Ma'mun, R Nilsen, H F Svendsen, O Juliussen. Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass % methyldiethanolamine solutions. Journal of Chemical & Engineering Data, 2005, 50(2): 630−634
https://doi.org/10.1021/je0496490
35 S Gamba, L A Pellegrini. Biogas upgrading: Analysis and comparison between water and chemical scrubbings. Chemical Engineering Transactions, 2013, 32: 1273−1278
36 W K Lewis, W G Whitman. Principles of gas absorption. Industrial & Engineering Chemistry, 1924, 16(12): 1215−1220
https://doi.org/10.1021/ie50180a002
37 S Moioli, L A Pellegrini, B Picutti, P Vergani. Improved rate-based modeling of H2S and CO2 removal by MDEA scrubbing. Industrial & Engineering Chemistry Research, 2013, 52(5): 2056−2065
https://doi.org/10.1021/ie301967t
38 D M A Austgen. Model of vapor-liquid equilibria for acid gas-alkanolamine-H2O systems. Dissertation for the Doctoral Degree. Texas: University of Texas, 1989
39 R E Dugas. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine. Dissertation for the Master Degree. Texas: The University of Texas, 2006
40 TRC. Selected Values of Properties of Chemical Compounds. Texas: Texas A&M University, College Station, 1980
[1] Xiaofei Sun, Shijie Feng, Zhe Zhang, Pengyu Zhang, Jiefeng Zhao, Yunling Gao, Junxian Yun. Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobic melamine sponge for oil/water separation[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1237-1246.
[2] Hossein Abdolmohammad-Zadeh, Arezu Salimi. A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions[J]. Front. Chem. Sci. Eng., 2021, 15(2): 450-459.
[3] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[4] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[5] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[6] Satoshi KANECO, Hiroaki KITANAGA, Hideyuki KATSUMATA, Tohru SUZUKI. Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer[J]. Front Chem Sci Eng, 2012, 6(4): 432-435.
[7] Maryam Takht Ravanchi, Saeed Sahebdelfar, Farnaz Tahriri Zangeneh. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions[J]. Front Chem Sci Eng, 2011, 5(2): 173-178.
[8] LU Sumin, MA Youguang, SHEN Shuhua, ZHU Chunying. Effect of fine solid particles on absorption rate of gaseous CO [J]. Front. Chem. Sci. Eng., 2008, 2(4): 368-372.
[9] GAO Jian, REN Zhongqi, ZHANG Zeting, ZHANG Weidong. Experimental studies on the influence of porosity on membrane absorption process[J]. Front. Chem. Sci. Eng., 2007, 1(4): 385-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed