Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (10) : 109    https://doi.org/10.1007/s11705-024-2460-y
Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion
Yu Zhang1, Yulei Qian1, Zhenye Tong1, Su Yan1, Xiaoyu Yong1, Yang-Chun Yong2, Jun Zhou1()
1. Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2. Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
 Download: PDF(1055 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Engineered photosynthetic bacterium Rhodopseudomonas palustris is excellent at one-step CO2 biomethanation and can use near-infrared light sources, overcoming the limitations of conventional photosynthetic systems. The current study constructed a biohybrid system that deposited CdS nanoparticles on R. palustris. This biohybrid system broadens the capture of sustainable solar energy, achieving a 155 nmol·mL–1 biological CH4 production under full visible light irradiation, 13.4-fold of that by the pure R. palustris. The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain, nitrogenase, nanofilaments, and redox stress defense was activated. Accordingly, we attributed the much-enhanced CO2 biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles. Our discovery offers insight and a promising strategy for improving the current CO2–CH4 biomanufacturing system.

Keywords CO2 methanation      Rhodopseudomonas palustris      CdS nanoparticles      green catalysis     
Corresponding Author(s): Jun Zhou   
Just Accepted Date: 28 April 2024   Issue Date: 07 June 2024
 Cite this article:   
Yu Zhang,Yulei Qian,Zhenye Tong, et al. Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion[J]. Front. Chem. Sci. Eng., 2024, 18(10): 109.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2460-y
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I10/109
Fig.1  Characterization of the R. palustris (N2ase*)-CdS biohybrid and biosynthetic CdS NPs. (a) TEM image of biosynthetic CdS NPs on an engineered R. palustris cell; (b) EDX pattern confirming the major elements of the NPs; (c) XRD pattern of the isolated CdS NPs; (d) UV-Vis spectrum; (e) LSV curves of CdS NPs; (f) energy band diagrams for Bio-CdS and chemical synthesized CdS QDs from the reported literature.
Fig.2  CO2–CH4 photosynthesis by the R. palustris (N2ase*)-CdS biohybrid. (a) Time curves of CH4 accumulation under different controls. Optimization of concentration parameters for three critical conditions: (b) Cd2+; (c) L-Cys; (d) SED. (e) CH4 accumulation of the biohybrid after optimization.
Fig.3  Photoelectrochemical tests of the R. palustris (N2ase*)-CdS biohybrid. (a) Proteinase K treatment of the R. palustris (N2ase*)-CdS biohybrid; (b) Nyquist plots recorded from a three-electrode electrochemical cell for the R. palustris (N2ase*)/R. palustris (N2ase*)-CdS biohybrid; (c) transition It curves with a light on/off cycle (50/50 s).
Fig.4  Biocompatibility of the R. palustris (N2ase*)-CdS biohybrid. (a) Curve of cell viability; (b) cell dry mass; (c, d) the fluorescence microscopic images of bacteria before and after photocatalysis.
Gene IDGene nameGene descriptionR. palustris, TPMR. palustris-CdS, TPM
HZF03_RS07585puhAPhotosynthetic reaction center subunit H513.591101.12
HZF03_RS07490Photosynthetic reaction center subunit M317.51689.70
HZF03_RS07485Photosynthetic reaction center subunit L310.79593.58
HZF03_RS07300Light-harvesting protein9430.3317855.31
HZF03_RS07305Light-harvesting protein1008.792148.67
HZF03_RS07475Light-harvesting protein4949.8717358.42
HZF03_RS07480Light-harvesting protein1855.547590.35
HZF03_RS13175Light-harvesting protein1727.572617.24
HZF03_RS13180Light-harvesting protein2204.303480.02
HZF03_RS13925Cytochrome b24.88117.14
HZF03_RS20065Cytochrome c100.20260.8733
HZF03_RS04200ctaDCytochrome c oxidase subunit I14.0933350.36333
Tab.1  Expressions of gene-encoded photosystem
Fig.5  Validation of the enhancement of the photosynthetic activity in the R. palustris (N2ase*)-CdS biohybrid. (a) ATP production of the R. palustris (N2ase*)/R. palustris (N2ase*)-CdS biohybrid with or without antimycin A; (b) the reduction of K3Fe(CN)6 for the R. palustris (N2ase*)/R. palustris (N2ase*)-CdS biohybrid calculated from changes in absorption at 420 nm.
Gene IDGene nameGene descriptionR. palustris, TPMR. palustris-CdS, TPM
HZF03_RS23205nifXNitrogen fixation protein nifX5.479.30
HZF03_RS23210nifNNitrogenase iron-molybdenum cofactor biosynthesis protein nifN2.293.80
HZF03_RS23215nifENitrogenase iron-molybdenum cofactor biosynthesis protein nifE5.106.71
HZF03_RS23220nifKNitrogenase molybdenum-iron protein subunit beta12.1828.67
HZF03_RS23225nifDNitrogenase molybdenum-iron protein alpha chain7.2013.07
HZF03_RS23230nifHNitrogenase iron protein6.0610.21
HZF03_RS07010anfOFe-only nitrogenase accessory protein anfO4.912.54
HZF03_RS07015anfKFe-only nitrogenase subunit beta13.7110.90
HZF03_RS07020anfGFe-only nitrogenase subunit delta2.461.93
HZF03_RS07025anfDNitrogenase iron-iron protein%2C alpha chain6.556.39
HZF03_RS07030Nitrogenase iron protein2.962.73
HZF03_RS12740vanadium nitrogenase3.482.87
Tab.2  Expressions of gene-encoded nitrogenase
Gene IDGene nameGene descriptionR. palustris, TPMR. palustris-CdS, TPM
HZF03_RS09970MotA/TolQ/ExbB proton channel family protein21.2648.69
HZF03_RS19870flgKFlagellar hook-associated protein flgK12.8228.93
HZF03_RS19875Flagellar hook-basal body complex protein32.3104.51
HZF03_RS06590Flagellar basal body rod modification protein flgD12.6538.98
HZF03_RS02405Pilus assembly protein9.0119.69
HZF03_RS18575Flp family type IVb pilin4759.89872.82
Tab.3  Expressions of gene-encoded nanofilaments
Fig.6  Genes responses to oxidative stress from various cadmium forms. (a) Glutaredoxin; (b) thioredoxin dealing with the CdS NPs; (c–e) three caspases; (f) glutaredoxin in R. palustris (N2ase*)-CdS biohybrid.
Fig.7  Pathways of electron transfer and CO2 biomethanation in R. palustris (N2ase*)-CdS biohybrid system. hv: light energy; LHC: light harvest center; Cyt c: cytochrome c; ETC Chain: inner-membrane photo-driven electron transfer chain; CBB: Calvin-Benson-Bassham; Cys: cysteine; Cyss: cystine.
1 J X Cao , J Zhang , Y Chen , R Fan , L Xu , E T Wu , Y Xue , J L Yang , Y M Chen , B Yang . et al.. Current status, future prediction and offset potential of fossil fuel CO2 emissions in China. Journal of Cleaner Production, 2023, 426: 139207
https://doi.org/10.1016/j.jclepro.2023.139207
2 J X Zhu , J T Li , R H Lu , R H Yu , S Y Zhao , C B Li , L Lv , L X Xia , X B Chen , W W Cai . et al.. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications, 2023, 14(1): 4670
https://doi.org/10.1038/s41467-023-40342-6
3 L Lv , R H Lu , J X Zhu , R H Yu , W Zhang , E H Cui , X B Chen , Y H Dai , L M Cui , J Li . et al.. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angewandte Chemie International Edition, 2023, 62(25): e202303117
https://doi.org/10.1002/anie.202303117
4 B SuM ZhengW LinX F LuD LuanS B WangX W D. Lou X W Lou. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Advanced Energy Materials, 2023, 13(15): 2203290
5 Y F Zhao , G B Chen , T Bian , C Zhou , G I N Waterhouse , L Z Wu , C H Tung , L J Smith , D O’Hare , T R Zhang . Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Advanced Materials, 2015, 27(47): 7824–7831
https://doi.org/10.1002/adma.201503730
6 J X Zhu , L Lv , S Zaman , X B Chen , Y H Dai , S H Chen , G J He , D S Wang , L Q Mai . Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy & Environmental Science, 2023, 16(11): 4812–4833
https://doi.org/10.1039/D3EE02196C
7 Y Wang , C B Zhang , R G Li . Modulating the selectivity of photocatalytic CO2 reduction in barium titanate by introducing oxygen vacancies. Transactions of Tianjin University, 2022, 28(4): 227–235
https://doi.org/10.1007/s12209-022-00334-x
8 N S Weliwatte , S D Minteer . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592
https://doi.org/10.1016/j.joule.2021.08.003
9 M Kumar , P C Sahoo , S Srikanth , R Bagai , S K Puri , S S V Ramakumar . Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation. Bioresource Technology, 2019, 272: 300–307
https://doi.org/10.1016/j.biortech.2018.10.031
10 M Martins , C Toste , I A C Pereira . Enhanced light-driven hydrogen production by self-photosensitized biohybrid systems. Angewandte Chemie International Edition, 2021, 60(16): 9055–9062
https://doi.org/10.1002/anie.202016960
11 J Ye , J Yu , Y Y Zhang , M Chen , X Liu , S G Zhou , Z He . Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B: Environmental, 2019, 257: 117916
https://doi.org/10.1016/j.apcatb.2019.117916
12 J Ye , G P Ren , L Kang , Y Y Zhang , X Liu , S G Zhou , Z He . Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion. iScience, 2020, 23(7): 101287
https://doi.org/10.1016/j.isci.2020.101287
13 L Y Liu , G J Xie , J Ding , B F Liu , D F Xing , N Q Ren , Q Wang . Microbial methane emissions from the non-methanogenesis processes: a critical review. Science of the Total Environment, 2022, 806: 151362
https://doi.org/10.1016/j.scitotenv.2021.151362
14 M Bižić , T Klintzsch , D Ionescu , M Y Hindiyeh , M Günthel , A M Muro-Pastor , W Eckert , T Urich , F Keppler , H P Grossart . Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 2020, 6(3): eaax5343
https://doi.org/10.1126/sciadv.aax5343
15 Y T Zhang , W Wei , Y Wang , B J Ni . Enhancing methane production from algae anaerobic digestion using diatomite. Journal of Cleaner Production, 2021, 315: 128138
https://doi.org/10.1016/j.jclepro.2021.128138
16 K Lenhart , M Bunge , S Ratering , T R Neu , I Schüttmann , M Greule , C Kammann , S Schnell , C Müller , H Zorn . et al.. Evidence for methane production by saprotrophic fungi. Nature Communications, 2012, 3(1): 1046
https://doi.org/10.1038/ncomms2049
17 Y N Zheng , D F Harris , Z Yu , Y F Fu , S Poudel , R N Ledbetter , K R Fixen , Z Y Yang , E S Boyd , M E Lidstrom . et al.. A pathway for biological methane production using bacterial iron-only nitrogenase. Nature Microbiology, 2018, 3(3): 281–286
https://doi.org/10.1038/s41564-017-0091-5
18 L Q Ma , Z Fang , Y Z Wang , J Zhou , Y C Yong . Photo-driven highly efficient one-step CO2 biomethanation with engineered photo-synthetic bacteria Rhodopseudomonas palustris. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9616–9621
https://doi.org/10.1021/acssuschemeng.0c02703
19 B Wang , K M Xiao , Z F Jiang , J F Wang , J C Yu , P K Wong . Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy & Environmental Science, 2019, 12(7): 2185–2191
https://doi.org/10.1039/C9EE00705A
20 L Shang , B Tong , H J Yu , G I N Waterhouse , C Zhou , Y F Zhao , M Tahir , L Z Wu , C H Tung , T Zhang . CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(3): 1501241
https://doi.org/10.1002/aenm.201501241
21 B LaSarre , D T Kysela , B D Stein , A Ducret , Y V Brun , J B McKinlay . Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in multiple genera of purple nonsulfur bacteria. MBio, 2018, 9(4): e00780–18
https://doi.org/10.1128/mBio.00780-18
22 B Wang , Z F Jiang , J C Yu , J F Wang , P K Wong . Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale, 2019, 11(19): 9296–9301
https://doi.org/10.1039/C9NR02896J
23 J Wang , T Xia , L Wang , X S Zheng , Z M Qi , C Gao , J F Zhu , Z Q Li , H X Xu , Y J Xiong . Enabling visible-light-driven selective CO2 reduction by doping quantum dots: trapping electrons and suppressing H2 evolution. Angewandte Chemie International Edition, 2018, 57(50): 16447–16451
https://doi.org/10.1002/anie.201810550
24 H J Bai , Z M Zhang , Y Guo , G E Yang . Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces. B, Biointerfaces, 2009, 70(1): 142–146
https://doi.org/10.1016/j.colsurfb.2008.12.025
25 K K Sakimoto , A B Wong , P Yang . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 351(6268): 74–77
https://doi.org/10.1126/science.aad3317
26 S F Huang , J H Tang , X Liu , G W Dong , S G Zhou . Fast light-driven biodecolorization by a Geobacter sulfurreducens-CdS biohybrid. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427–15433
https://doi.org/10.1021/acssuschemeng.9b02870
27 D Gupta , M S Guzman , A Bose . Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9–10): 863–876
https://doi.org/10.1007/s10295-020-02309-0
28 G J Chen , Z R Zhou , B F Li , X H Lin , C Yang , Y X Fang , W Lin , Y D Hou , G G Zhang , S Wang , S B Wang . S-Scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. Journal of Environmental Sciences, 2024, 140: 103–112
https://doi.org/10.1016/j.jes.2023.05.028
29 X ZhuangY D HouR S YuanZ X DingO Wee-JunS B Wang. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Physico-Chimica Sinica, 2022, 38(7): 2111021 (in Chinese)
30 M Y Chen , Z Fang , L X Xu , D Zhou , X J Yang , H J Zhu , Y C Yong . Enhancement of photo-driven biomethanation under visible light by nano-engineering of Rhodopseudomonas palustris. Bioresources and Bioprocessing, 2021, 8(1): 30
https://doi.org/10.1186/s40643-021-00383-5
31 S Jin , Y Jeon , M S Jeon , J Shin , Y Song , S Kang , J Bae , S Cho , J K Lee , D R Kim . et al.. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020552118
https://doi.org/10.1073/pnas.2020552118
32 D Gupta , M C Sutherland , K Rengasamy , J M Meacham , R G Kranz , A Bose . Photoferrotrophs produce a pioAB electron conduit for extracellular electron uptake. MBio, 2019, 10(6): e02668–19
https://doi.org/10.1128/mBio.02668-19
33 M Grattieri . Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochemical & Photobiological Sciences, 2020, 19(4): 424–435
https://doi.org/10.1039/c9pp00470j
34 O Czarnecki , B Grimm . Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 2012, 63(4): 1675–1687
https://doi.org/10.1093/jxb/err437
35 J J Buggy , M W Sganga , C E Bauer . Characterization of a light-responding transactivator responsible for differentially controlling reaction-center and light-harvesting-I gene-expression in rhodobacter-capsulatus. Journal of Bacteriology, 1994, 176(22): 6936–6943
https://doi.org/10.1128/jb.176.22.6936-6943.1994
36 M S Guzman , K Rengasamy , M M Binkley , C Jones , T O Ranaivoarisoa , R Singh , D A Fike , J M Meacham , A Bose . Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nature Communications, 2019, 10(1): 1355
https://doi.org/10.1038/s41467-019-09377-6
37 Y Zeng , X Zhou , R L Qi , N Dai , X C Fu , H Zhao , K Peng , H T Yuan , Y M Huang , F T Lv . et al.. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein. Advanced Functional Materials, 2021, 31(8): 2007814
https://doi.org/10.1002/adfm.202007814
38 J B McKinlay , C S Harwood . Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11669–11675
https://doi.org/10.1073/pnas.1006175107
39 Y N Zheng , C S Harwood . Influence of energy and electron availability on in vivo methane and hydrogen production by a variant molybdenum nitrogenase. Applied and Environmental Microbiology, 2019, 85(9): e02671–18
https://doi.org/10.1128/AEM.02671-18
40 Y Kim , S A Shin , J Lee , K D Yang , K T Nam . Hybrid system of semiconductor and photosynthetic protein. Nanotechnology, 2014, 25(34): 342001
https://doi.org/10.1088/0957-4484/25/34/342001
41 K A Brown , D F Harris , M B Wilker , A Rasmussen , N Khadka , H Hamby , S Keable , G Dukovic , J W Peters , L C Seefeldt . et al.. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016, 352(6284): 448–450
https://doi.org/10.1126/science.aaf2091
42 D Z Cui , J Q Wang , H Wang , Y Yang , M Zhao . The cytotoxicity of endogenous CdS and Cd2+ ions during CdS NPs biosynthesis. Journal of Hazardous Materials, 2021, 409: 124485
https://doi.org/10.1016/j.jhazmat.2020.124485
43 B Weng , M Y Qi , C Han , Z R Tang , Y J Xu . Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catalysis, 2019, 9(5): 4642–4687
https://doi.org/10.1021/acscatal.9b00313
44 P L Tremblay , M Y Xu , Y M Chen , T Zhang . Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction. iScience, 2020, 23(1): 100784
https://doi.org/10.1016/j.isci.2019.100784
45 M Gürgan , H Koku , I Eroglu , M Yücel . Transcriptome analysis of the effects of light and dark cycle on hydrogen production metabolism of Rhodobacter capsulatus DSM1710. International Journal of Hydrogen Energy, 2020, 45(60): 34707–34719
https://doi.org/10.1016/j.ijhydene.2020.03.108
46 K Venkidusamy , M Megharaj , U Schröder , F Karouta , S V Mohan , R Naidu . Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Advances, 2015, 5(122): 100790–100798
https://doi.org/10.1039/C5RA08742B
[1] FCE-24013-OF-ZY_suppl_1 Download
[1] Kechao Zhao,Zhenhua Li,Li Bian. CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2016, 10(2): 273-280.
[2] Wei WANG, Jinlong GONG. Methanation of carbon dioxide: an overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed