Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 2-10    https://doi.org/10.1007/s11705-010-0528-3
REVIEW ARTICLE
Methanation of carbon dioxide: an overview
Wei WANG, Jinlong GONG()
Key Laboratory for Green Chemical Technology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(265 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although being very challenging, utilization of carbon dioxide (CO2) originating from production processes and flue gases of CO2-intensive sectors has a great environmental and industrial potential due to improving the resource efficiency of industry as well as by contributing to the reduction of CO2 emissions. As a renewable and environmentally friendly source of carbon, catalytic approaches for CO2 fixation in the synthesis of chemicals offer the way to mitigate the increasing CO2 buildup. Among the catalytic reactions, methanation of CO2 is a particularly promising technique for producing energy carrier or chemical. This article focuses on recent developments in catalytic materials, novel reactors, and reaction mechanism for methanation of CO2.

Keywords CO2 methanation      hydrogenation      catalysis      methane      environmental science     
Corresponding Author(s): GONG Jinlong,Email:jlgong@tju.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Wei WANG,Jinlong GONG. Methanation of carbon dioxide: an overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0528-3
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I1/2
catalystpreparationa)dispersion /%reaction temperature /Kturnover number /(× 103 s-1)reference
4.3wt-% Ni/SiO2-RHAIE40.777317.2[20]
4.1wt-% Ni/SiO2-gelIE35.777311.8[20]
3.5wt-% Ni/SiO2-RHADP47.677316.2[19]
3.0 wt-% Ni/SiO2I39.05505.0[15]
Tab.1  Comparison of activity of hydrogenation of CO on nickel catalysts []
Fig.1  Comparison of CO conversion and CH yield for CO hydrogenation over 15 wt-% Ni/RHA-AlO and 15 wt-% Ni/SiO-AlO catalysts []
Fig.2  XRD patterns of Ni-CeZrO catalysts at various nickel loadings: (a) CeZrO; (b) 5 wt-% Ni-CeZrO; (c) 10 wt-% Ni-CeZrO; (d) 15 wt-% Ni-CeZrO []
Fig.3  Variations of in situ FT-IR signal intensities with temperature raising (a) Pt/Tnt and (b) Pt/TiO []
Fig.4  S: the support, M: the metal, I: the metal-support interface
The proposed reaction mechanism of CO methanation []
Fig.5  A potential bifunctional mechanism for Pd-Mg/SiO []
Fig.6  DRIFT results after adsorption of CO and CO and after adsorption of CO and reaction with hydrogen []
1 Dell’Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Converting carbon dioxide into carbamato derivatives. Chemical Reviews , 2003, 103(10): 3857–3898
doi: 10.1021/cr940266m pmid:14531715
2 Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci , 2010, 3(1): 43–81
doi: 10.1039/b912904a
3 Riduan S N, Zhang Y G. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans (Cambridge, England) , 2010, 39(14): 3347–3357
doi: 10.1039/b920163g pmid:20379526
4 Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews , 2001, 101(4): 953–996
doi: 10.1021/cr000018s pmid:11709862
5 Jessop P G, Joo F, Tai C C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews , 2004, 248(21-24): 2425–2442
doi: 10.1016/j.ccr.2004.05.019
6 Omae I. Aspects of carbon dioxide utilization. Catalysis Today , 2006, 115(1-4): 33–52
doi: 10.1016/j.cattod.2006.02.024
7 Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews , 2007, 107(6): 2365–2387
doi: 10.1021/cr068357u pmid:17564481
8 Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (Cambridge, England) , 2007, (28): 2975–2992
doi: 10.1039/b700658f pmid:17622414
9 Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun (Cambridge) , 2009, (11): 1312–1330
doi: 10.1039/b819997c pmid:19259576
10 Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today , 2009, 148(3-4): 191–205
doi: 10.1016/j.cattod.2009.07.075
11 Lunde P J, Kester F L. Carbon dioxide methanation on a ruthenium catalyst. Industrial & Engineering Chemistry Process Design and Development , 1974, 13(1): 27–33
doi: 10.1021/i260049a005
12 VanderWiel D P, Zilka-Marco J L, Wang Y, Tonkovich A Y, Wegeng R S. In: Spring National Meeting. Atlanta: AIChe, 2000
13 Chang F W, Kuo M S, Tsay M T, Hsieh M C. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Applied Catalysis A: General , 2003, 247(2): 309–320
doi: 10.1016/S0926-860X(03)00181-9
14 Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis , 2007, 249(2): 370–379
doi: 10.1016/j.jcat.2007.03.029
15 Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: I. Specific activity of Ni/SiO2. Journal of Catalysis , 1981, 68(1): 67–76
doi: 10.1016/0021-9517(81)90040-3
16 Peebles D E, Goodman D W, White J M. Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers. Journal of Physical Chemistry , 1983, 87(22): 4378–4387
doi: 10.1021/j100245a014
17 Vance C K, Bartholomew C H. Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel. Applied Catalysis , 1983, 7(2): 169–177
doi: 10.1016/0166-9834(83)80005-0
18 Chang F W, Hsiao T J, Chung S W, Lo J J. Nickel supported on rice husk ash—activity and selectivity in CO2 methanation. Applied Catalysis A: General , 1997, 164(1-2): 225–236
doi: 10.1016/S0926-860X(97)00173-7
19 Chang F W, Hsiao T J, Shih J D. Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation. Industrial & Engineering Chemistry Research , 1998, 37(10): 3838–3845
doi: 10.1021/ie980152r
20 Chang F W, Tsay M T, Liang S P. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Applied Catalysis A: General , 2001, 209(1-2): 217–227
doi: 10.1016/S0926-860X(00)00772-9
21 Chang F W, Tsay M T, Kuo M S. Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA-Al2O3 systems. Thermochimica Acta , 2002, 386(2): 161–172
doi: 10.1016/S0040-6031(01)00771-7
22 Puxley D C, Kitchener I J, Komodromos C, Perkyns N D. In preparation of catalysts. Amsterdam: Elsevier, 1983, 237
23 Sane S, Bonnier J M, Damon J P, Masson J. Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Al intermetallic phases. Applied Catalysis , 1984, 9(1): 69–83
doi: 10.1016/0166-9834(84)80039-1
24 Lee G D, Moon M J, Park J H, Park S S, Hong S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity. Korean J Chem Eng , 2005, 22(4): 541–546
doi: 10.1007/BF02706639
25 Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Norskov J K, Christensen C H. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis , 2007, 45(1-4): 9–13
doi: 10.1007/s11244-007-0232-9
26 Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys. Catalysis Communications , 2006, 7(1): 24–28
doi: 10.1016/j.catcom.2005.08.005
27 Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today , 1999, 50(2): 285–298
doi: 10.1016/S0920-5861(98)00510-0
28 Tsolakis A, Golunski S E. Sensitivity of process efficiency to reaction routes in exhaust-gas reforming of diesel fuel. Chemical Engineering Journal , 2006, 117(2): 131–136
doi: 10.1016/j.cej.2005.12.017
29 Perkas N, Amirian G, Zhong Z Y, Teo J, Gofer Y, Gedanken A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catalysis Letters , 2009, 130(3-4): 455–462
doi: 10.1007/s10562-009-9952-8
30 Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General , 2009, 369(1-2): 90–96
doi: 10.1016/j.apcata.2009.09.005
31 Song H L, Yang J, Zhao J, Chou L J. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chinese Journal of Catalysis , 2010, 31(1): 21–23
doi: 10.1016/S1872-2067(09)60036-X
32 Guo F, Chu W, Xu H Y, Zhang T. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation. Chinese Journal of Catalysis , 2007, 28: 429–434
33 Kustov A L, Frey A M, Larsen K E, Johannessen T, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General , 2007, 320: 98–104
doi: 10.1016/j.apcata.2006.12.017
34 Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. Journal of Catalysis , 1994, 148(1): 9–21
doi: 10.1006/jcat.1994.1180
35 Ku?mierz M. Kinetic study on carbon dioxide hydrogenation over Ru/gamma-Al2O3 catalysts. Catalysis Today , 2008, 137(2-4): 429–432
doi: 10.1016/j.cattod.2008.03.003
36 Abe T, Tanizawa M, Watanabe K, Taguchi A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci , 2009, 2(3): 315–321
doi: 10.1039/b817740f
37 Kowalczyk Z, Stolecki K, Rarńg-Pilecka W, Mi?kiewicz E, Wilczkowska E, Karpińiski Z. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Applied Catalysis A: General , 2008, 342(1-2): 35–39
doi: 10.1016/j.apcata.2007.12.040
38 Luo L, Li S, Zhu Y. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J Serb Chem Soc , 2005, 70(12): 1419–1425
doi: 10.2298/JSC0512419L
39 Yu K P, Yu W Y, Kuo M C, Liou Y C, Chien S H. Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental , 2008, 84(1-2): 112–118
doi: 10.1016/j.apcatb.2008.03.009
40 Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General , 1997, 165(1-2): 335–347
doi: 10.1016/S0926-860X(97)00216-0
41 Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part I. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering , 2006, 48(2): 91–144
doi: 10.1080/01614940500364909
42 Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. J Mol Catal A , 2001, 173(1-2): 275–286
doi: 10.1016/S1381-1169(01)00154-6
43 Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A. Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catalysis Letters , 2000, 66(1/2): 33–37
doi: 10.1023/A:1019022917507
44 Galuszka J. Carbon dioxide chemistry during oxidative coupling of methane on a Li/MgO catalyst. Catalysis Today , 1994, 21(2-3): 321–331
doi: 10.1016/0920-5861(94)80153-3
45 Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis , 2009, 266(1): 92–97
doi: 10.1016/j.jcat.2009.05.018
46 Szailer T, Novak E, Oszko A, Erdohelyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Topics in Catalysis , 2007, 46(1-2): 79–86
doi: 10.1007/s11244-007-0317-5
47 Vayenas C G, Bebelis S, Ladas S. Dependence of catalytic rates on catalyst work function. Nature , 1990, 343(6259): 625–627
doi: 10.1038/343625a0
48 Lintz H G, Vayenas C G. Solid ion conductors in heterogeneous catalysis. Angewandte Chemie International Edition in English , 1989, 28(6): 708–715
doi: 10.1002/anie.198907081
49 Vayenas C G, Bebelis S, Neophytides S, Yentekakis I V. Non-faradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A, Materials Science & Processing , 1989, 49(1): 95–103
doi: 10.1007/BF00615471
50 Vayenas C G, Koutsodontis C G. Non-Faradaic electrochemical activation of catalysis.The Journal of Chemical Physics , 2008, 128(18): 182506–182518
doi: 10.1063/1.2824944 pmid:18532791
51 Bebelis S, Karasali H, Vayenas C G. Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. Journal of Applied Electrochemistry , 2008, 38(8): 1127–1133
doi: 10.1007/s10800-008-9574-7
52 Papaioannou E I, Souentie S, Hammad A, Vayenas C G. Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today , 2009, 146(3-4): 336–344
doi: 10.1016/j.cattod.2009.06.008
53 Kr?mer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Applied Catalysis A: General , 2009, 369(1-2): 42–52
doi: 10.1016/j.apcata.2009.08.027
54 Falconer J L, Zagli A E. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catalysis , 1980, 62(2): 280–285
doi: 10.1016/0021-9517(80)90456-X
55 Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis , 1982, 77(2): 460–472
doi: 10.1016/0021-9517(82)90186-5
56 Marwood M, Doepper R, Renken A. In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General , 1997, 151(1): 223–246
doi: 10.1016/S0926-860X(96)00267-0
57 Fujita S, Terunuma H, Kobayashi H, Takezawa N. Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React Kinet Catal Lett , 1987, 33(1): 179–184
doi: 10.1007/BF02066720
58 Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. Journal of Molecular Catalysis , 1990, 63(2): 243–254
doi: 10.1016/0304-5102(90)85147-A
59 Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts. Journal of Catalysis , 1976, 44(1): 152–162
doi: 10.1016/0021-9517(76)90384-5
60 Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxide methanation. Journal of Catalysis , 1978, 51(1): 1–8
doi: 10.1016/0021-9517(78)90232-4
61 Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys. Journal of Catalysis , 1976, 44(3): 439–448
doi: 10.1016/0021-9517(76)90421-8
62 Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios.The Journal of Physical Chemistry B , 2005, 109(6): 2432–2438
doi: 10.1021/jp040239s pmid:16851238
63 Lapidus A L, Gaidai N A, Nekrasov N V, Tishkova L A, Agafonov Y A, Myshenkova T N. The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry , 2007, 47(2): 75–82
doi: 10.1134/S0965544107020028
64 Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, N?rskov J K. Theoretical studies of stability and reactivity of CHx species on Ni(111). Journal of Catalysis , 2000, 189(1): 16–30
doi: 10.1006/jcat.1999.2699
65 Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S. Hydrogenation of carbon monoxide on Ni(1 1 1) investigated with surface X-ray diffraction at atmospheric pressure. Surface Science , 2004, 557(1-3): 21–30
doi: 10.1016/j.susc.2004.03.061
66 Choe S J, Kang H J, Kim S J, Park S B, Park D H, Huh D S. Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bulletin of the Korean Chemical Society , 2005, 26(11): 1682–1688
doi: 10.5012/bkcs.2005.26.11.1682
67 Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. Journal of Physical Chemistry C , 2010, 114(15): 7128–7131
doi: 10.1021/jp100938v
68 Blangenois N, Jacquemin M, Ruiz P. U S. Patent, WO2010006386, 2010-1-21
69 Jacquemin M, Beuls A, Ruiz P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalysis Today , 2010, 157(1-4): 462–466
doi: 10.1016/j.cattod.2010.06.016
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[3] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[4] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[5] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[6] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[7] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[8] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[9] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[10] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[11] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[12] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[13] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[14] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[15] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed