Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 127    https://doi.org/10.1007/s11705-024-2478-1
Highly dispersed Pd nanoparticles in situ reduced and stabilized by nitrogen-alkali lignin-doped phenolic nanospheres and their application in vanillin hydrodeoxygenation
Xue Gu, Yu Qin, Jiahui Wei, Bing Yuan(), Fengli Yu, Liantao Xin, Congxia Xie, Shitao Yu()
State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
 Download: PDF(1384 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Herein, we introduced a nitrogen-alkali lignin-doped phenolic resin (N@ALnPR) to produce palladium nanoparticles through an in situ reduction of palladium in an aqueous phase, without the need for additional reagents or a reducing atmosphere. The phenolic resin nanospheres and the resulting palladium nanoparticles were extensively characterized. Alkali lignin created a highly conducive environment for nitrogen incorporation, dispersion, reduction, and stabilization of palladium, leading to a distinct catalytic performance of palladium nanoparticles in vanillin hydrodeoxygenation. Under specific conditions of 1 mmol of vanillin, 40 mg of catalyst, 1 MPa H2, 90 °C, and 3 h, the optimized Pd/N@AL30PR catalyst exhibited a nearly complete conversion of vanillin, 98.9% selectivity toward p-creosol, and good stability for multiple reuses. Consequently, an environmentally friendly lignin-based catalyst was developed and used for the efficient hydrodeoxygenation conversion of lignin-based platform compounds.

Keywords alkali lignin      phenolic nanosphere      palladium nanoparticles      hydrodeoxygenation      vanillin     
Corresponding Author(s): Bing Yuan,Shitao Yu   
Just Accepted Date: 21 May 2024   Issue Date: 24 July 2024
 Cite this article:   
Xue Gu,Yu Qin,Jiahui Wei, et al. Highly dispersed Pd nanoparticles in situ reduced and stabilized by nitrogen-alkali lignin-doped phenolic nanospheres and their application in vanillin hydrodeoxygenation[J]. Front. Chem. Sci. Eng., 2024, 18(11): 127.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2478-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/127
Fig.1  SEM images of (a) N@AL0PR, (b) N@AL10PR, (c) N@AL30PR, and (d) N@AL40PR. The inset shows the particle size distribution of different resin spheres.
Fig.2  Typical HAADF-STEM images of (a) Pd/N@AL0PR and (b) Pd/N@AL30PR, (c) HRTEM image of Pd/N@AL30PR, and (d) N2 adsorption/desorption isotherms of N@ALnPR microspheres. The inset shows the Pd particle size distribution of different catalysts.
Entry Catalyst Conv. of vanillin/% Sel. of product/%
p-Creosol Vanillyl alcohol
1 Pd/N@AL0PR 74.6 51.4 48.6
2 Pd/N@AL10PR 98.5 89.3 10.7
3 Pd/N@AL30PR 99.8 92.7 7.3
4 Pd/N@AL40PR 98.9 88.3 11.7
5 Pd/N@SLS30PR 97.5 92.5 7.5
6 Pd/AL30PR 79.0 59.5 40.5
7 Pd'/N@AL30PR a) 98.5 90.3 9.7
8 Pd"/N@AL30PR b) 98.7 92.1 7.9
9 Pd/N@CAL30PR c) 48.1 73.4 26.6
10 PdNaBH4/N@CAL30PR d) 97.0 93.9 6.1
Tab.1  Effect of raw materials on the preparation of Pd nanoparticles reduced and stabilized by phenolic spheres*
Fig.3  The corresponding EDS elemental mapping images of (a–e) Pd/N@AL30PR and (f–j) Pd/N@AL0PR.
Fig.4  FT-IR spectra of AL, AL30PR, N@AL0PR, N@AL30PR, and Pd/N@AL30PR.
Fig.5  XRD patterns of N@AL0PR, N@AL30PR, and Pd/N@AL30PR.
Fig.6  (a) XPS full-scan spectra, (b) Pd 3d fitted spectra, (c) N 1s fitted spectra, and (d) C 1s fitted spectra of different samples.
Entry Preparation time/h Metal dosage/mL Conv. of vanillin/% Sel. of product/%
p-Creosol Vanillyl alcohol
1 1 8 92.5 90.3 9.7
2 2 8 98.2 91.1 8.9
3 3 8 99.8 92.7 7.3
4 4 8 99.5 92.4 7.6
5 3 4 49.9 97.9 2.1
6 3 5 59.7 99.9 0.1
7 3 7 87.5 98.5 1.5
8 3 10 99.7 92.8 8.2
Tab.2  Effect of preparation conditions of Pd/N@AL30PRa)
Fig.7  Effect of (a, b) Pd/N@AL30PR dosage (conditions: 1 mmol vanillin, 10 mL water, 80 °C, 1 MPa H2); (c, d) reaction temperature (conditions: 40 mg Pd/N@AL30PR, 1 mmol vanillin, 10 mL water, 1 MPa H2); (e, f) reaction pressure (conditions: 40 mg Pd/N@AL30PR, 1 mmol vanillin, 10 mL water, 90 °C) in vanillin hydrodeoxygenation.
Fig.8  Plausible mechanism of catalytic hydrodeoxygenation of vanillin over Pd/N@AL30PR.
Fig.9  Catalytic stability of Pd/N@AL30PR in vanillin hydrodeoxygenation. Reaction conditions: 40 mg of Pd/N@AL30PR, 1 mmol of vanillin, 10 mL of water, 80 °C, 1 MPa H2, 4 h.
Fig.10  (a) HAADF-STEM, (b) XPS scan spectrum, (c) N 1s fitted spectrum, and (d) Pd 3d fitted spectrum of Pd/N@AL30PR*, the spent catalyst sample after 6 runs. The inset shows the Pd particle size distribution of the spent catalyst.
1 H C Erythropel , J B Zimmerman , Winter T M de , L Petitjean , F Melnikov , C H Lam , A W Lounsbury , K E Mellor , N Z Janković , Q Tu . et al.. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20(9): 1929–1961
https://doi.org/10.1039/C8GC00482J
2 Z H Liu , B Z Li , J S Yuan , Y J Yuan . Creative biological lignin conversion routes toward lignin valorization. Trends in Biotechnology, 2022, 40(12): 1550–1566
https://doi.org/10.1016/j.tibtech.2022.09.014
3 P Sivagurunathan , T Raj , C S Mohanta , S Semwal , A Satlewal , R P Gupta , S K Puri , S S V Ramakumar , R Kumar . 2G waste lignin to fuel and high value-added chemicals: approaches, challenges and future outlook for sustainable development. Chemosphere, 2021, 268: 129326
https://doi.org/10.1016/j.chemosphere.2020.129326
4 M J Gan , Y Q Niu , X J Qu , C H Zhou . Lignin to value-added chemicals and advanced materials: extraction, degradation, and functionalization. Green Chemistry, 2022, 24(20): 7705–7750
https://doi.org/10.1039/D2GC00092J
5 L Zhang , N Shang , S Gao , J Wang , T Meng , C Du , T Shen , J Huang , Q Wu , H Wang . et al.. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catalysis, 2020, 10(15): 8672–8682
https://doi.org/10.1021/acscatal.0c00239
6 L Xu , F Liaqat , J Sun , M I Khazi , R Xie , D Zhu . Advances in the vanillin synthesis and biotransformation: a review. Renewable & Sustainable Energy Reviews, 2024, 189: 113905
https://doi.org/10.1016/j.rser.2023.113905
7 Y Zhai , M Chu , N Shang , C Wang , H Wang , Y Gao . Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels. Applied Surface Science, 2020, 506: 144681
https://doi.org/10.1016/j.apsusc.2019.144681
8 J RanR YangChengY CuiJ Wang. YangCheng R, Cui Y, Wang J. Significant promotion of carboxyl groups in palladium nanoparticles-supported biomass carbon catalysts for efficient low-temperature hydrodeoxygenation of lignin derivatives in water. ACS Sustainable Chemistry & Engineering, 2022, 10(22): 7277–7287
9 D P Phan , E Y Lee . Phosphoric acid enhancement in a Pt-encapsulated metal-organic framework (MOF) bifunctional catalyst for efficient hydro-deoxygenation of oleic acid from biomass. Journal of Catalysis, 2020, 386: 19–29
https://doi.org/10.1016/j.jcat.2020.03.024
10 H Fan , F Qin , Q Yuan , Z Sun , H Gu , W Xu , H Tang , S Liu , Y Wang , W Chen . et al.. Improving the selectivity of hydrogenation and hydrodeoxygenation for vanillin by using vacancy-coupled Ru-N3 single atoms immobilized on defective boron nitride. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(33): 17560–17569
https://doi.org/10.1039/D3TA01384G
11 X Yue , N Shang , W Gao , X Cheng , S Gao , C Wang , Z Wang . PdAg nanoparticles supported on bipyridine-based porous organic polymers: an effective bimetallic catalyst for the hydrodeoxygenation of vanillin. Energy Technology, 2021, 9(9): 2100306
https://doi.org/10.1002/ente.202100306
12 J L Santos , P Mäki-Arvela , J Wärnå , A Monzón , M A Centeno , D Y U Murzin . Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars. Part II: catalytic behaviour. Applied Catalysis B: Environmental, 2020, 268: 118425
https://doi.org/10.1016/j.apcatb.2019.118425
13 R Zong , H Li , W Ding , H Huang . Highly dispersed Pd on zeolite/carbon nanocomposites for selective hydrodeoxygenation of biomass-derived molecules under mild conditions. ACS Sustainable Chemistry & Engineering, 2021, 9(29): 9891–9902
https://doi.org/10.1021/acssuschemeng.1c02876
14 G B Strapasson , L S Sousa , G B Báfero , D S Leite , B D Moreno , C B Rodella , D Zanchet . Acidity modulation of Pt-supported catalyst enhances C–O bond cleavage over acetone hydrodeoxygenation. Applied Catalysis B: Environmental, 2023, 335: 122863
https://doi.org/10.1016/j.apcatb.2023.122863
15 K R Aadil , A Barapatre , A S Meena , H Jha . Hydrogen peroxide sensing and cytotoxicity activity of acacia lignin stabilized silver nanoparticles. International Journal of Biological Macromolecules, 2016, 82: 39–47
https://doi.org/10.1016/j.ijbiomac.2015.09.072
16 X Chen , B Yuan , F Yu , Y Liu , C Xie , S Yu . Hydrogenation of α-pinene over platinum nanoparticles reduced and stabilized by sodium lignosulfonate. ACS Omega, 2020, 5(15): 8902–8911
https://doi.org/10.1021/acsomega.0c00533
17 Z Zhang , J Wei , B Yuan , F Yu , C Xie , S Yu . Hydrodeoxygenation of vanillin over Pd nanoparticles reduced and stabilized by sodium lignosulfonate in aqueous phase. Industrial Crops and Products, 2023, 192: 116055
https://doi.org/10.1016/j.indcrop.2022.116055
18 D Pletzer , J Asnis , Y N Slavin , R E W Hancock , H Bach , K Saatchi , U O Häfeli . Rapid microwave-based method for the preparation of antimicrobial lignin-capped silver nanoparticles active against multidrug-resistant bacteria. International Journal of Pharmaceutics, 2021, 596: 120299
https://doi.org/10.1016/j.ijpharm.2021.120299
19 S Kalami , M Arefmanesh , E Master , M Nejad . Replacing 100% of phenol in phenolic adhesive formulations with lignin. Journal of Applied Polymer Science, 2017, 134(30): 45124
https://doi.org/10.1002/app.45124
20 J Li , J Zhang , S Zhang , Q Gao , J Li , W Zhang . Alkali lignin depolymerization under eco-friendly and cost-effective NaOH/urea aqueous solution for fast curing bio-based phenolic resin. Industrial Crops and Products, 2018, 120: 25–33
https://doi.org/10.1016/j.indcrop.2018.04.027
21 S Kalami , N Chen , H Borazjani , M Nejad . Comparative analysis of different lignins as phenol replacement in phenolic adhesive formulations. Industrial Crops and Products, 2018, 125: 520–528
https://doi.org/10.1016/j.indcrop.2018.09.037
22 I Van Nieuwenhove , T Renders , J Lauwaert , T De Roo , J De Clercq , A Verberckmoes . Biobased resins using lignin and glyoxal. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18789–18809
https://doi.org/10.1021/acssuschemeng.0c07227
23 W Li , H Sun , G Wang , W Sui , L Dai , C Si . Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chemistry, 2023, 25(6): 2241–2261
https://doi.org/10.1039/D2GC04319J
24 M Mennani , M Kasbaji , A Ait Benhamou , A Boussetta , A A Mekkaoui , N Grimi , A Moubarik . Current approaches, emerging developments and functional prospects for lignin-based catalysts—a review. Green Chemistry, 2023, 25(8): 2896–2929
https://doi.org/10.1039/D3GC00072A
25 J Yang , F Xiong , H Wang , B Ma , F Guo , Y Qing , F Chu , Y Wu . Facile and scalable construction of nitrogen-doped lignin-based carbon nanospheres for high-performance supercapacitors. Fuel, 2023, 343: 128007
https://doi.org/10.1016/j.fuel.2023.128007
26 S Chen , G Wang , W Sui , A M Parvez , C Si . Synthesis of lignin-functionalized phenolic nanosphere supported Ag nanoparticles with excellent dispersion stability and catalytic performance. Green Chemistry, 2020, 22(9): 2879–2888
https://doi.org/10.1039/C9GC04311J
27 S Chen , G Wang , W Sui , A M Parvez , L Dai , C Si . Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Industrial Crops and Products, 2020, 145: 112164
https://doi.org/10.1016/j.indcrop.2020.112164
28 S Chen , G Wang , T Pang , W Sui , Z Chen , C Si . Green assembly of high-density and small-sized silver nanoparticles on lignosulfonate-phenolic resin spheres: focusing on multifunction of lignosulfonate. International Journal of Biological Macromolecules, 2021, 166: 893–901
https://doi.org/10.1016/j.ijbiomac.2020.10.246
29 Y Meng , C Li , X Liu , J Lu , Y Cheng , L P Xiao , H Wang . Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Science of the Total Environment, 2019, 685: 847–855
https://doi.org/10.1016/j.scitotenv.2019.06.278
30 J Liu , S Z Qiao , H Liu , J Chen , A Orpe , D Zhao , G Q M Lu . Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie, 2011, 123(26): 6069–6073
https://doi.org/10.1002/ange.201102011
31 J Zhao , W Niu , L Zhang , H Cai , M Han , Y Yuan , S Majeed , S Anjum , G Xu . A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol–formaldehyde resin and carbon nano/microspheres. Macromolecules, 2013, 46(1): 140–145
https://doi.org/10.1021/ma302119t
32 S Gao , Z Zhang , K Liu , B Dong . Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Applied Catalysis B: Environmental, 2016, 188: 245–252
https://doi.org/10.1016/j.apcatb.2016.01.074
33 H Pan , G Sun , T Zhao . Synthesis and characterization of aminated lignin. International Journal of Biological Macromolecules, 2013, 59: 221–226
https://doi.org/10.1016/j.ijbiomac.2013.04.049
34 Y Horikawa , S Hirano , A Mihashi , Y Kobayashi , S Zhai , J Sugiyama . Prediction of lignin contents from infrared spectroscopy: chemical digestion and lignin/biomass ratios of cryptomeria japonica. Applied Biochemistry and Biotechnology, 2019, 188(4): 1066–1076
https://doi.org/10.1007/s12010-019-02965-8
35 Y Chen , X Gong , G Yang , Q Li , N Zhou . Preparation and characterization of a nanolignin phenol formaldehyde resin by replacing phenol partially with lignin nanoparticles. RSC Advances, 2019, 9(50): 29255–29262
https://doi.org/10.1039/C9RA04827H
36 C F Carter , H Lange , S V Ley , I R Baxendale , B Wittkamp , J G Goode , N L Gaunt , I R React . Flow Cell: a new analytical tool for continuous flow chemical processing. Organic Process Research & Development, 2010, 14(2): 393–404
https://doi.org/10.1021/op900305v
37 T Baran , I Sargin . Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation. International Journal of Biological Macromolecules, 2020, 155: 814–822
https://doi.org/10.1016/j.ijbiomac.2020.04.003
38 A K Kar , R Sarkar , A K Manal , R Kumar , S Chakraborty , R Ahuja , R Srivastava . Unveiling and understanding the remarkable enhancement in the catalytic activity by the defect creation in UIO-66 during the catalytic transfer hydrodeoxygenation of vanillin with isopropanol. Applied Catalysis B: Environmental, 2023, 325: 122385
https://doi.org/10.1016/j.apcatb.2023.122385
39 T Li , H Li , C Li . Hydrodeoxygenation of vanillin to creosol under mild conditions over carbon nanospheres supported palladium catalysts: influence of the carbon defects on surface of catalysts. Fuel, 2022, 310: 122432
https://doi.org/10.1016/j.fuel.2021.122432
40 H Kim , S Yang , Y H Lim , J M Ha , D H Kim . Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: complete hydrodeoxygenation of vanillin. Journal of Hazardous Materials, 2022, 423: 126525
https://doi.org/10.1016/j.jhazmat.2021.126525
[1] Yixuan Chang, Fanwei Kong, Zihao Zhu, Ziai Wang, Chunxia Chen, Xiaobai Li, Hongwei Ma. Lignin-derived dual-function red light carbon dots for hypochlorite detection and anti-counterfeiting[J]. Front. Chem. Sci. Eng., 2023, 17(7): 966-975.
[2] Yinteng Shi, Lin Ai, Haonan Shi, Xiaoyu Gu, Yujun Han, Jixiang Chen. Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor[J]. Front. Chem. Sci. Eng., 2022, 16(4): 443-460.
[3] Jimei Zhang, Fuping Tian, Junwen Chen, Yanchun Shi, Hongbin Cao, Pengge Ning, Shanshan Sun, Yongbing Xie. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts[J]. Front. Chem. Sci. Eng., 2021, 15(2): 288-298.
[4] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[5] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed