Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 131    https://doi.org/10.1007/s11705-024-2483-4
Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide
Shuangping Han1, Pengyu Zan1, Yu Yan1, Yaoxing Bian1, Chengbing Qin2(), Liantuan Xiao1,2()
1. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
2. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
 Download: PDF(1058 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the past few decades, significant progress has been made in thin-film optoelectronic devices based on transition metal dichalcogenides. However, the exciton states’ sensitivity to the environment presents challenges for device applications. This study reports the evolution of photoinduced exciton states in monolayer tungsten disulfide in a low-pressure environment to help elucidate the physical mechanism of the transition between neutral and charged excitons. At 222 mTorr, the transition rate between excitons comprises two components: 0.09 s–1 and 1.68 s–1. Based on this phenomenon, we developed a pressure-tuning method that allows for a tuning range of approximately 40% of exciton weight. Our study demonstrates that the intensity of neutral exciton emission from monolayer tungsten disulfide follows a power-law distribution in relation to pressure, indicating a highly sensitive pressure dependence. We provide a nondestructive and highly sensitive method for exciton conversion through in situ optical manipulation. This highlights the potential development of monolayer tungsten disulfide for pressure sensors and explains the impact of environmental factors on the product quality in photovoltaic devices. In addition, it demonstrates the promising future of monolayer transition metal dichalcogenides in applications such as photovoltaic devices and miniature biochemical sensors.

Keywords neutral exciton state      charged exciton state      transition metal dichalcogenides      pressure sensitive     
Corresponding Author(s): Chengbing Qin,Liantuan Xiao   
Just Accepted Date: 31 May 2024   Issue Date: 30 August 2024
 Cite this article:   
Shuangping Han,Pengyu Zan,Yu Yan, et al. Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide[J]. Front. Chem. Sci. Eng., 2024, 18(11): 131.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2483-4
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/131
Fig.1  Experimental setup and sample characterization. (a) Schematic diagram of the confocal microscopy imaging system. The 4f system ensures the light focuses on the sample within the scanning range. M: mirror; DM: dichroic mirror; SPCM: single photon counting module. (b) optical imaging of the mechanical exfoliated (ME) WS2. The contour surrounded by the red dotted line is the monolayer WS2 (1L-WS2) region. The inset is the height profile of the marked line in the optical image produced through atomic force microscopy. Scale bar: 20 μm. (c) PL spectra of ME 1L-WS2. The gray dots represent the experimental data, the solid red line is the sum curve obtained through the 2-peak Lorentz fitting, and the green and magenta represent the emission of A0 and A? excitons, respectively. (d) Raman spectra of ME 1L-WS2. The Raman signal of the silicon substrate is located at 521 cm?1. The other two peaks are E2g and A1g Raman modes of the WS2, with second-order longitudinal acoustic phonons emission also included in the left peak. Test temperature: room temperature.
Fig.2  Characterization of photoluminescence (PL) spectra at 760 Torr and 222 mTorr. (a, b) Two-dimensional intensity imaging of ME 1L-WS2 at 760 Torr and 222 mTorr, respectively. The horizontal axis is the wavelength, while the vertical axis represents time (determined by the number of acquisition frames. Frame rate: 0.1 s/frame). (c, d) Time evolution of PL intensity at the peak position of A0 and A? at 760 Torr and 222 mTorr, respectively.
Fig.3  Emission spectra of ME 1L-WS2 at 222 mTorr. (a) PL intensity as a function of irradiation time; (b) PL spectra of ME 1L-WS2 at different times at 222 mTorr; (c) Upper panel: Evolution of neutral-charged exciton conversion with time, where the magenta triangle and green circle are the spectral weights of A0 and A?, respectively. The blue and black solid lines are the fitting results, which follow a bi-exponential distribution, representing the roles of laser radiation and gas pressure in the conversion process, respectively. Lower panel: The variation of the spectral weight of each exciton relative to the stable-stage average value; (d) Upper panel: The time evolution of the peak energy of A0 and A? by Lorentz bimodal fitting. Lower panel: The variation in peak energy difference between A0 and A? over time.
W(t)A0A?ΔE
k1/s–10.0890.0270.0290.029
k2/s–11.6752.1460.8280.733
Tab.1  Bi-exponential fitting results of the curves in Fig.3(c) and Fig.3(d), in which the conversion rate of charged excitons and ΔE shows a high consistency
Fig.4  Exciton engineering based on pressure. (a) The evolution of conversion efficiency between A0 and A? with pressure. The green circle and red triangle are the fitting results of ηA0 and ηA?, respectively; (b) the evolution of the pressure as a function of the emission intensity. The red triangles correspond to A0; the dotted line is the power-law fitting trajectory. The green circle represents A?.
1 M H Naik , E C Regan , Z Zhang , Y H Chan , Z Li , D Wang , Y Yoon , C S Ong , W Zhao , S Zhao . et al.. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature, 2022, 609(7925): 52–57
https://doi.org/10.1038/s41586-022-04991-9
2 R Su , M Kuiri , K Watanabe , T Taniguchi , J Folk . Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nature Materials, 2023, 22(11): 1332–1337
https://doi.org/10.1038/s41563-023-01653-7
3 Y Wang , T Seki , X Yu , C C Yu , K Y Chiang , K F Domke , J Hunger , Y Chen , Y Nagata , M Bonn . Chemistry governs water organization at a graphene electrode. Nature, 2023, 615(7950): E1–E2
https://doi.org/10.1038/s41586-022-05669-y
4 Y Cao , P Qu , C Wang , J Zhou , M Li , X Yu , X Yu , J Pang , W Zhou , H Liu . et al.. Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self-powered photodetector. Advanced Optical Materials, 2022, 10(19): 2200816
https://doi.org/10.1002/adom.202200816
5 Y Li , S Huang , S Peng , H Jia , J Pang , B Ibarlucea , C Hou , Y Cao , W Zhou , H Liu . et al.. Toward smart sensing by MXene. Small, 2023, 19(14): 2206126
https://doi.org/10.1002/smll.202206126
6 J Zhou , J Zhu , W He , Y Cao , J Pang , J Ni , J Zhang . Selective preferred orientation for high-performance antimony selenide thin-film solar cells via substrate surface modulation. Journal of Alloys and Compounds, 2023, 938: 168593
https://doi.org/10.1016/j.jallcom.2022.168593
7 Y Cao , C Liu , T Yang , Y Zhao , Y Na , C Jiang , J Zhou , J Pang , H Liu , M H Rummeli . et al.. Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells. Solar Energy Materials and Solar Cells, 2022, 246: 111926
https://doi.org/10.1016/j.solmat.2022.111926
8 J Pang , S Peng , C Hou , H Zhao , Y Fan , C Ye , N Zhang , T Wang , Y Cao , W Zhou . Applications of graphene in five senses, nervous system, and artificial muscles. ACS Sensors, 2023, 8(2): 482–514
https://doi.org/10.1021/acssensors.2c02790
9 C Schneider , M M Glazov , T Korn , S Höfling , B Urbaszek . Two-dimensional semiconductors in the regime of strong light-matter coupling. Nature Communications, 2018, 9(1): 2695
https://doi.org/10.1038/s41467-018-04866-6
10 A Chaves , J G Azadani , H Alsalman , D R da Costa , R Frisenda , A J Chaves , S H Song , Y D Kim , D He , J Zhou . et al.. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020, 4(1): 1–21
11 C Cui , F Xue , W J Hu , L J Li . Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Materials and Applications, 2018, 2(1): 1–14
12 Z Peng , X Chen , Y Fan , D J Srolovitz , D Lei . Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light, Science & Applications, 2020, 9(1): 190
https://doi.org/10.1038/s41377-020-00421-5
13 C Qin , Y Gao , Z Qiao , L Xiao , S Jia . Atomic-layered MoS2 as a tunable optical platform. Advanced Optical Materials, 2016, 4(10): 1429–1456
https://doi.org/10.1002/adom.201600323
14 S Han , C Boguschewski , Y Gao , L Xiao , J Zhu , P H M van Loosdrecht . Incoherent phonon population and exciton-exciton annihilation dynamics in monolayer WS2 revealed by time-resolved resonance Raman scattering. Optics Express, 2019, 27(21): 29949–29961
https://doi.org/10.1364/OE.27.029949
15 A Chernikov , A M van der Zande , H M Hill , A F Rigosi , A Velauthapillai , J Hone , T F Heinz . Electrical Tuning of exciton binding energies in monolayer WS2. Physical Review Letters, 2015, 115(12): 126802
https://doi.org/10.1103/PhysRevLett.115.126802
16 L Guo , C A Chen , Z M Zhang , D Monahan , Y H R Lee , G Fleming . Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Advances, 2020, 2(6): 2333–2338
https://doi.org/10.1039/D0NA00240B
17 R J Gelly , D Renaud , X Liao , B Pingault , S Bogdanovic , G Scuri , K Watanabe , T Taniguchi , B Urbaszek , H Park . et al.. Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer. Nature Communications, 2022, 13(1): 232
https://doi.org/10.1038/s41467-021-27877-2
18 S Han , X Liang , C Qin , Y Gao , Y Song , S Wang , X Su , G Zhang , R Chen , J Hu . et al.. Criteria for assessing the interlayer coupling of van der Waals heterostructures using ultrafast pump-probe photoluminescence spectroscopy. ACS Nano, 2021, 15(8): 12966–12974
https://doi.org/10.1021/acsnano.1c01787
19 C Yang , Y Gao , C Qin , X Liang , S Han , G Zhang , R Chen , J Hu , L Xiao , S Jia . All-optical reversible manipulation of exciton and trion emissions in monolayer WS2. Nanomaterials, 2019, 10(1): 23
https://doi.org/10.3390/nano10010023
20 A P Nayak , Z Yuan , B Cao , J Liu , J Wu , S T Moran , T Li , D Akinwande , C Jin , J F Lin . Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano, 2015, 9(9): 9117–9123
https://doi.org/10.1021/acsnano.5b03295
21 A Sharma , Y Zhu , R Halbich , X Sun , L Zhang , B Wang , Y Lu . Engineering the dynamics and transport of excitons, trions, and biexcitons in monolayer WS2. ACS Applied Materials & Interfaces, 2022, 14(36): 41165–41177
https://doi.org/10.1021/acsami.2c08199
22 S Conti , L Pimpolari , G Calabrese , R Worsley , S Majee , D K Polyushkin , M Paur , S Pace , D H Keum , F Fabbri . et al.. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nature Communications, 2020, 11(1): 3566
https://doi.org/10.1038/s41467-020-17297-z
23 D H Lien , M Amani , S B Desai , G H Ahn , K Han , J H He , J W III Ager , M C Wu , A Javey . Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nature Communications, 2018, 9(1): 1229
https://doi.org/10.1038/s41467-018-03218-8
24 M Sajid , A Osman , G U Siddiqui , H B Kim , S W Kim , J B Ko , Y K Lim , K H Choi . All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Scientific Reports, 2017, 7(1): 5802
https://doi.org/10.1038/s41598-017-06265-1
25 Y Yu , P W K Fong , S Wang , C Surya . Fabrication of WS2/GaN p-n junction by wafer-scale WS2 thin film transfer. Scientific Reports, 2016, 6(1): 37833
https://doi.org/10.1038/srep37833
26 F Tagarelli , E Lopriore , D Erkensten , R Perea-Causín , S Brem , J Hagel , Z Sun , G Pasquale , K Watanabe , T Taniguchi . et al.. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nature Photonics, 2023, 17(7): 615–621
https://doi.org/10.1038/s41566-023-01198-w
27 X Ma , R Zhang , C An , S Wu , X Hu , J Liu . Efficient doping modulation of monolayer WS2 for optoelectronic applications. Chinese Physics B, 2019, 28(3): 037803
https://doi.org/10.1088/1674-1056/28/3/037803
28 P K Chow , R B Jacobs-Gedrim , J Gao , T M Lu , B Yu , H Terrones , N Koratkar . Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9(2): 1520–1527
https://doi.org/10.1021/nn5073495
29 I Paradisanos , S Germanis , N T Pelekanos , C Fotakis , E Kymakis , G Kioseoglou , E Stratakis . Room temperature observation of biexcitons in exfoliated WS2 monolayers. Applied Physics Letters, 2017, 110(19): 193102
https://doi.org/10.1063/1.4983285
30 B Zhu , X Chen , X Cui . Exciton binding energy of monolayer WS2. Scientific Reports, 2015, 5(1): 9218
https://doi.org/10.1038/srep09218
31 M S Kim , S J Yun , Y Lee , C Seo , G H Han , K K Kim , Y H Lee , J Kim . Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 2016, 10(2): 2399–2405
https://doi.org/10.1021/acsnano.5b07214
32 X Liang , C Qin , Y Gao , S Han , G Zhang , R Chen , J Hu , L Xiao , S Jia . Reversible engineering of spin-orbit splitting in monolayer MoS2 via laser irradiation under controlled gas atmospheres. Nanoscale, 2021, 13(19): 8966–8975
https://doi.org/10.1039/D1NR00019E
33 L Li , Z Y Zeng , T Liang , M Tang , Y Cheng . Elastic properties and electronic structure of WS2 under pressure from first-principles calculations. Zeitschrift für Naturforschung. Section A. Physical Sciences, 2017, 72(4): 295–301
https://doi.org/10.1515/zna-2016-0398
34 Z Chen , J Li , T Li , T Fan , C Meng , C Li , J Kang , L Chai , Y Hao , Y A Tang . et al.. CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. National Science Review, 2022, 9(8): nwac104
https://doi.org/10.1093/nsr/nwac104
35 F Zheng , Z Chen , J Li , R Wu , B Zhang , G Nie , Z Xie , H Zhang . A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Advanced Science, 2022, 9(14): 2105231
https://doi.org/10.1002/advs.202105231
36 T Xue , W Liang , Y Li , Y Sun , Y Xiang , Y Zhang , Z Dai , Y Duo , L Wu , K Qi . et al.. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications, 2019, 10(1): 28
https://doi.org/10.1038/s41467-018-07947-8
37 S Xu , J Sun , L Weng , Y Hua , W Liu , A Neville , M Hu , X Gao . In-situ friction and wear responses of WS2 films to space environment: vacuum and atomic oxygen. Applied Surface Science, 2018, 447: 368–373
https://doi.org/10.1016/j.apsusc.2018.04.012
38 J Jadczak , J Kutrowska-Girzycka , P Kapuściński , Y S Huang , A Wójs , L Bryja . Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28(39): 395702
https://doi.org/10.1088/1361-6528/aa87d0
[1] FCE-24036-OF-HS_suppl_1 Download
[1] Yulun Liu, Yaojie Zhu, Zuowei Yan, Ruixue Bai, Xilin Zhang, Yanbo Ren, Xiaoyu Cheng, Hui Ma, Chongyun Jiang. Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures[J]. Front. Chem. Sci. Eng., 2024, 18(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed