|
|
Active targeted drug delivery system constructed from functionalized pillararenes for chemo/photodynamic synergistic therapy |
Bing Lu( ), Yuying Huang, Jiachen Xia, Yong Yao( ) |
College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China |
|
|
Abstract Nowadays, although functionalized pillararenes have been widely designed to be used in drug delivery system, targeted group modified pillararenes have been seldom reported and used in tumor multimodal therapy. Herein, a functionalized pillararene with a polyethylene glycol chain and triphenylphosphonium cation WP5-PEG-TPP was designed and synthesized. Subsequently, an active targeted drug delivery system was constructed based on its host-guest interactions with a newly designed porphyrin derivative, Py-Por. The experimental results demonstrated that this drug delivery system has exhibited excellent targeting ability against tumor cells, but interestingly it could not enter normal cells. After loading the hypoxia-activated prodrug tirapazamine, the prepared nanodrugs displayed high lethality to tumor cells due to their chemo/photodynamic synergistic therapy capability, but negligible toxicity to normal cells. Preliminary therapeutic mechanism study elucidated the synergistic therapy process.
|
Keywords
durg delivery system
active targeting
pillararene
chemo/photodynamic synergistic therapy.
|
Corresponding Author(s):
Bing Lu,Yong Yao
|
Just Accepted Date: 11 June 2024
Issue Date: 31 July 2024
|
|
1 |
R L Siegel , A N Giaquinto , A Jemal . Cancer Statistics, 2024. A Cancer Journal for Clinicians, 2024, 74(1): 12–49
https://doi.org/10.3322/caac.21820
|
2 |
V P Torchilin . Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews. Drug Discovery, 2014, 13(11): 813–827
https://doi.org/10.1038/nrd4333
|
3 |
Z R LuP Qiao. Drug delivery in cancer therapy, quo vadis? Molecular Pharmaceutics, 2018, 15(9): 3603–3616
|
4 |
S M Park , A Aalipour , O Vermesh , J H Yu , S S Gambhir . Towards clinically translatable in vivo nanodiagnostics. Nature Reviews. Materials, 2017, 2(5): 17014
https://doi.org/10.1038/natrevmats.2017.14
|
5 |
A Z Wang , R Langer , O C Farokhzad . Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 2012, 63(1): 185–198
https://doi.org/10.1146/annurev-med-040210-162544
|
6 |
P Gao , W Pan , N Li , B Tang . Boosting cancer therapy with organelle-targeted nanomaterials. ACS Applied Materials & Interfaces, 2019, 11(30): 26529–26558
https://doi.org/10.1021/acsami.9b01370
|
7 |
S S Liew , X Qin , J Zhou , L Li , W Huang , S Q Yao . Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angewandte Chemie International Edition, 2020, 60(5): 2232–2256
https://doi.org/10.1002/anie.201915826
|
8 |
K Wang , Y Xiang , W Pan , H Wang , N Li , B Tang . Dual-targeted photothermal agents for enhanced cancer therapy. Chemical Science, 2020, 11(31): 8055–8072
https://doi.org/10.1039/D0SC03173A
|
9 |
M J Webber , R Langer . Drug delivery by supramolecular design. Chemical Society Reviews, 2017, 46(21): 6600–6620
https://doi.org/10.1039/C7CS00391A
|
10 |
Z Li , N Song , Y W Yang . Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter, 2019, 1(2): 345–368
https://doi.org/10.1016/j.matt.2019.05.019
|
11 |
J Zhou , L Rao , G Yu , T R Cook , X Chen , F Huang . Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50(4): 2839–2891
https://doi.org/10.1039/D0CS00011F
|
12 |
N Kwon , H Kim , X Li , J Yoon . Supramolecular agents for combination of photodynamic therapy and other treatments. Chemical Science (Cambridge), 2021, 12(21): 7248–7268
https://doi.org/10.1039/D1SC01125A
|
13 |
W Feng , M Jin , K Yang , Y Pei , Z Pei . Supramolecular delivery systems based on pillararenes. Chemical Communications, 2018, 54(97): 13626–13640
https://doi.org/10.1039/C8CC08252A
|
14 |
T Ogoshi , T Kakuta , T A Yamagishi . Applications of pillar[n]arene-based supramolecular assemblies. Angewandte Chemie International Edition, 2018, 58(8): 2197–2206
https://doi.org/10.1002/anie.201805884
|
15 |
H Zhang , Z Liu , Y Zhao . Pillararene-based self-assembled amphiphiles. Chemical Society Reviews, 2018, 47(14): 5491–5528
https://doi.org/10.1039/C8CS00037A
|
16 |
N Song , X Y Lou , L Ma , H Gao , Y W Yang . Supramolecular nanotheranostics based on pillarenes. Theranostics, 2019, 9(11): 3075–3093
https://doi.org/10.7150/thno.31858
|
17 |
T Xiao , L Qi , W Zhong , C Lin , R Wang , L Wang . Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Materials Chemistry Frontiers, 2019, 3(10): 1973–1993
https://doi.org/10.1039/C9QM00428A
|
18 |
C Wang , H Li , J Dong , Y Chen , X Luan , X Li , X Du . Pillararene-based supramolecular vesicles for stimuli-responsive drug delivery. Chemistry, 2022, 28(71): 202202050
https://doi.org/10.1002/chem.202202050
|
19 |
Q Yang , W Xu , M Cheng , S Zhang , E G Kovaleva , F Liang , D Tian , J A Liu , R M Abdelhameed , J Cheng , H Li . Controlled release of drug molecules by pillararene-modified nanosystems. Chemical Communications, 2022, 58(20): 3255–3269
https://doi.org/10.1039/D1CC05584D
|
20 |
X Li , M Shen , J Yang , L Liu , Y W Yang . Pillararene-based stimuli-responsive supramolecular delivery systems for cancer therapy. Advanced Materials, 2024, 36(16): 2313317
https://doi.org/10.1002/adma.202313317
|
21 |
K Yang , Z Zhang , J Du , W Li , Z Pei . Host-guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chemical Communications, 2020, 56(44): 5865–5876
https://doi.org/10.1039/D0CC02001J
|
22 |
H Zhu , H Wang , B Shi , L Shangguan , W Tong , G Yu , Z Mao , F Huang . Supramolecular peptide constructed by molecular lego allowing programmable self-assembly for photodynamic therapy. Nature Communications, 2019, 10(1): 2412
https://doi.org/10.1038/s41467-019-10385-9
|
23 |
M A H Muhammed , L K Cruz , A H Emwas , A M El-Zohry , B Moosa , O F Mohammed , N M Khashab . Pillar[5]arene-stabilized silver nanoclusters: extraordinary stability and luminescence enhancement induced by host-guest interactions. Angewandte Chemie International Edition, 2019, 58(44): 15665–15670
https://doi.org/10.1002/anie.201906740
|
24 |
X Xu , F A Jerca , K Van Hecke , V V Jerca , R Hoogenboom . High compression strength single network hydrogels with pillar[5]arene junction points. Materials Horizons, 2020, 7(2): 566–573
https://doi.org/10.1039/C9MH01401B
|
25 |
Y Cai , Z Zhang , Y Ding , L Hu , J Wang , T Chen , Y Yao . Recent development of pillar[n]arene-based amphiphiles. Chinese Chemical Letters, 2021, 32(4): 1267–1279
https://doi.org/10.1016/j.cclet.2020.10.036
|
26 |
Y Mi , J Ma , W Liang , C Xiao , W Wu , D Zhou , J Yao , W Sun , J Sun , G Gao . et al.. Guest-binding-induced interhetero hosts charge transfer crystallization: selective coloration of commonly used organic solvents. Journal of the American Chemical Society, 2021, 143(3): 1553–1561
https://doi.org/10.1021/jacs.0c11833
|
27 |
R TangY YeS ZhuY WangB LuY Yao. Pillar[6]arenes: from preparation, host-guest property to self-assembly and applications. Chinese Chemical Letters, 2023, 34(107734
|
28 |
J Xia , J Wang , Q Zhao , B Lu , Y Yao . Dual-responsive drug-delivery system based on peg-functionalized pillararenes containing disulfide and amido bonds for cancer theranostics. ChemBioChem, 2023, 24(21): 202300513
https://doi.org/10.1002/cbic.202300513
|
29 |
Y Feng , S Qi , X Yu , X Zhang , H Zhu , G Yu . Supramolecular modulation of tumor microenvironment through pillar[5]arene-based host–guest recognition to synergize cancer immunotherapy. Journal of the American Chemical Society, 2023, 145(34): 18789–18799
https://doi.org/10.1021/jacs.3c03031
|
30 |
B Lu , J Xia , Y Huang , Y Yao . The design strategy for pillararene based active targeted drug delivery systems. Chemical Communications, 2023, 59(81): 12091–12099
https://doi.org/10.1039/D3CC04021F
|
31 |
Q L Li , Y Sun , L Ren , X Wang , C Wang , L Li , Y W Yang , X Yu , J Yu . Supramolecular nanosystem based on pillararene-capped cus nanoparticles for targeted chemo-photothermal therapy. ACS Applied Materials & Interfaces, 2018, 10(35): 29314–29324
https://doi.org/10.1021/acsami.8b09330
|
32 |
S Lan , Y Liu , K Shi , D Ma . Acetal-functionalized pillar[5]arene: a pH-responsive and versatile nanomaterial for the delivery of chemotherapeutic agents. ACS Applied Bio Materials, 2020, 3(4): 2325–2333
https://doi.org/10.1021/acsabm.0c00086
|
33 |
M Cen , Y Ding , J Wang , X Yuan , B Lu , Y Wang , Y Yao . Cationic water-soluble pillar[5]arene-modified Cu2–xSe nanoparticles: supramolecular trap for ATP and application in targeted photothermal therapy in the NIR-II window. ACS Macro Letters, 2020, 9(11): 1558–1562
https://doi.org/10.1021/acsmacrolett.0c00714
|
34 |
P Wei , J A Czaplewska , L Wang , S Schubert , J C Brendel , U S Schubert . Straightforward access to glycosylated, acid sensitive nanogels by host-guest interactions with sugar-modified pillar[5]arenes. ACS Macro Letters, 2020, 9(4): 540–545
https://doi.org/10.1021/acsmacrolett.0c00030
|
35 |
H Peng , B Xie , X Yang , J Dai , G Wei , Y He . Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA. Chemical Communications (Cambridge), 2020, 56(58): 8115–8118
https://doi.org/10.1039/D0CC02522D
|
36 |
S Guo , Q Huang , J Wei , S Wang , Y Wang , L Wang , R Wang . Efficient intracellular delivery of native proteins facilitated by preorganized guanidiniums on pillar[5]arene skeleton. Nano Today, 2022, 43: 101396
https://doi.org/10.1016/j.nantod.2022.101396
|
37 |
B Lu , Y Huang , H Quan , J Xia , J Wang , Y Ding , Y Wang , Y Yao . Mitochondria-targeting multimodal phototheranostics based on triphenylphosphonium cation modified amphiphilic pillararenes and A–D–A fused-ring photosensitizers. ACS Macro Letters, 2023, 12(10): 1365–1371
https://doi.org/10.1021/acsmacrolett.3c00454
|
38 |
S Chao , Z Shen , B Li , Y Pei , Z Pei . An L-arginine-functionalized pillar[5]arene-based supramolecular photosensitizer for synergistically enhanced cancer therapeutic effectiveness. Chemical Communications, 2023, 59(23): 3455–3458
https://doi.org/10.1039/D3CC00123G
|
39 |
S Chao , Z Shen , Y Pei , Y Lv , X Chen , J Ren , K Yang , Z Pei . Pillar[5]arene-based supramolecular photosensitizer for enhanced hypoxic-tumor therapeutic effectiveness. Chemical Communications (Cambridge), 2021, 57(62): 7625–7628
https://doi.org/10.1039/D1CC02959B
|
40 |
G Yu , W Yu , L Shao , Z Zhang , X Chi , Z Mao , C Gao , F Huang . Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Advanced Functional Materials, 2016, 26(48): 8999–9008
https://doi.org/10.1002/adfm.201601770
|
41 |
X Wu , Y Zhang , Y Lu , S Pang , K Yang , Z Tian , Y Pei , Y Qu , F Wang , Z Pei . Synergistic and targeted drug delivery based on nano-CeO2 capped with galactose functionalized pillar[5]arene via host-guest interactions. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(19): 3483–3487
https://doi.org/10.1039/C7TB00752C
|
42 |
H Peng , B Xie , X Cen , J Dai , Y Dai , X Yang , Y He . Glutathione-responsive multifunctional nanoparticles based on mannose-modified pillar[5]arene for targeted antibiotic delivery against intracellular methicillin-resistant S. aureus. Materials Chemistry Frontiers, 2022, 6(3): 360–367
https://doi.org/10.1039/D1QM01459E
|
43 |
S Chao , P Huang , Z Shen , Y Pei , Y Lv , Y Lu , Z Pei . A mannose-functionalized pillar[5]arene-based supramolecular fluorescent probe for real-time monitoring of gemcitabine delivery to cancer cells. Organic Chemistry Frontiers: An International Journal of Organic Chemistry, 2023, 10(14): 3491–3497
https://doi.org/10.1039/D3QO00476G
|
44 |
J Li , X Lv , J Li , W Jin , Z Chen , Y Wen , Z Pei , Y Pei . A supramolecular near-infrared nanophotosensitizer from host-guest complex of lactose-capped pillar[5]arene with aza-bodipy derivative for tumor eradication. Organic Chemistry Frontiers: An International Journal of Organic Chemistry, 2023, 10(8): 1927–1935
https://doi.org/10.1039/D3QO00065F
|
45 |
M Yu , R Cao , Z Ma , M Zhu . Development of “smart” drug delivery systems for Chemo/PDT synergistic treatment. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2023, 11(7): 1416–1433
https://doi.org/10.1039/D2TB02248F
|
46 |
Q Wang , L Tian , J Xu , B Xia , J Li , F Lu , X Lu , W Wang , W Huang , Q Fan . Multifunctional supramolecular vesicles for combined photothermal/photodynamic/hypoxia-activated chemotherapy. Chemical Communications, 2018, 54(73): 10328–10331
https://doi.org/10.1039/C8CC05560B
|
47 |
H Quan , Y Huang , J Xia , J Yang , B Lu , P Liu , Y Yao . Integrating pillar[5]arene and bodipy for a supramolecular nanoplatform to achieve synergistic photodynamic therapy and chemotherapy. ChemBioChem, 2023, 24(19): 202300461
https://doi.org/10.1002/cbic.202300461
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|