|
|
γ-Valerolactone/CuCl2 biphasic system for high total monosaccharides recovery from pretreatment and enzymatic hydrolysis processes of eucalyptus |
Shuhua Mo, Yao Zheng, Jianyu Gong, Minsheng Lu( ) |
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China |
|
|
Abstract The efficient fractionation and recovery of monosaccharides (xylose and glucose) from lignocellulosic biomass facilitates subsequent sugar-based derivative production. This study introduces a one-pot γ-valerolactone/CuCl2 biphasic pretreatment system (100-mmol·L–1 CuCl2, 180 °C, 60 min) capable of achieving removal rates of 92.25% and 90.64% for xylan and lignin, respectively, while retaining 83.88% of cellulose. Compared to other metal chlorides (NaCl, LiCl, FeCl3, and AlCl3), the γ-valerolactone/CuCl2 system recovered 121.2 mg·(g eucalyptus)–1 of xylose and 55.96 mg·(g eucalyptus)–1 of glucose during the pretreatment stage and 339.2 mg·(g eucalyptus)–1 of glucose during the enzymatic hydrolysis stage (90.78% of glucose yield), achieving a total monosaccharide recovery of 86.31%. In addition, the recovery of γ-valerolactone was 79.33%, exhibiting minimal changes relative to the pretreatment performance. The method proposed in this study allows a high total monosaccharides recovery and a circular economy-oriented pretreatment approach, offering a viable pathway for biorefinery.
|
Keywords
lignocellulose
biorefinery
total monosaccharides recovery
γ-valerolactone
|
Corresponding Author(s):
Minsheng Lu
|
Just Accepted Date: 11 June 2024
Issue Date: 31 July 2024
|
|
1 |
S X Nie , C J Chen , C J Zhu . Advanced biomass materials: progress in the applications for energy, environmental, and emerging fields. Frontiers of Chemical Science and Engineering, 2023, 17(7): 795–797
https://doi.org/10.1007/s11705-023-2336-6
|
2 |
M Wu , J K Liu , Z Y Yan , B Wang , X M Zhang , F Xu , R C Sun . Efficient recovery and structural characterization of lignin from cotton stalk based on a biorefinery process using a γ-valerolactone/water system. RSC Advances, 2016, 6(8): 6196–6204
https://doi.org/10.1039/C5RA23095K
|
3 |
T Y Nguyen , C M Cai , R Kumar , C E Wyman . Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem, 2015, 8(10): 1716–1725
https://doi.org/10.1002/cssc.201403045
|
4 |
B Satari , K Karimi , R Kumar . Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable Energy & Fuels, 2019, 3(1): 11–62
https://doi.org/10.1039/C8SE00287H
|
5 |
A S Patri , R Mohan , Y Q Pu , C G Yoo , A J Ragauskas , R Kumar , D Kisailus , C M Cai , C E Wyman . THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity. Biotechnology for Biofuels, 2021, 14(1): 63
https://doi.org/10.1186/s13068-021-01904-2
|
6 |
J Y Cheng , C Huang , Y N Zhan , X Z Liu , J Wang , X Z Meng , C G Yoo , G G Fang , A J Ragauskas . A high-solid DES pretreatment using never-dried biomass as the starting material: towards high-quality lignin fractionation. Green Chemistry, 2023, 25(4): 1571–1581
https://doi.org/10.1039/D2GC04595H
|
7 |
H Xu , S H Mo , Q Peng , M S Lu . One-pot lignocellulose fractionation using lewis acid-catalyzed GVL/H2O system toward complete exploitation of eucalyptus. Industrial Crops and Products, 2023, 202: 117026
https://doi.org/10.1016/j.indcrop.2023.117026
|
8 |
G Song , M Madadi , C Sun , L Shao , M Tu , A Abdulkhani , Q Zhou , X Lu , J Hu , F Sun . Surfactants facilitated glycerol organosolv pretreatment of lignocellulosic biomass by structural modification for co-production of fermentable sugars and highly reactive lignin. Bioresource Technology, 2023, 383: 129178
https://doi.org/10.1016/j.biortech.2023.129178
|
9 |
W H Li , X S Tan , C L Miao , Z Y Zhang , Y X Wang , A J Ragauskas , X S Zhuang . Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production. Green Chemistry, 2023, 25(3): 1169–1178
https://doi.org/10.1039/D2GC04404H
|
10 |
H Q Le , A Zaitseva , J P Pokki , M Stahl , V Alopaeus , H Sixta . Solubility of organosolv lignin in γ-valerolactone/water binary mixtures. ChemSusChem, 2016, 9(20): 2939–2947
https://doi.org/10.1002/cssc.201600655
|
11 |
J S Luterbacher , J M Rand , D M Alonso , J Han , J T Youngquist , C T Maravelias , B F Pfleger , J A Dumesic . Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science, 2014, 343(6168): 277–280
https://doi.org/10.1126/science.1246748
|
12 |
Y Wu , H R Ji , X X Ji . Biomass pretreatment using biomass-derived organic solvents facilitates the extraction of lignin and enzymatic hydrolysis of glucan. Cellulose, 2023, 30(5): 2859–2872
https://doi.org/10.1007/s10570-023-05061-7
|
13 |
S N Sun , X Chen , Y H Tao , X F Cao , M F Li , J L Wen , S X Nie , R C Sun . Pretreatment of eucalyptus urophylla in gamma-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis. Industrial Crops and Products, 2019, 132: 21–28
https://doi.org/10.1016/j.indcrop.2019.02.004
|
14 |
L J Jonsson , C Martin . Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 2016, 199: 103–112
https://doi.org/10.1016/j.biortech.2015.10.009
|
15 |
P Moodley , E B G Kana . Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: effect on physiochemical structure and enzymatic saccharification. Bioresource Technology, 2017, 235: 35–42
https://doi.org/10.1016/j.biortech.2017.03.031
|
16 |
Y J Hou , S S Wang , B J Deng , Y Ma , X Long , C R Qin , C Liang , C X Huang , S Q Yao . Selective separation of hemicellulose from poplar by hydrothermal pretreatment with ferric chloride and pH buffer. International Journal of Biological Macromolecules, 2023, 251: 126374
https://doi.org/10.1016/j.ijbiomac.2023.126374
|
17 |
I Romero , J C Lopez-Linares , M Moya , E Castro . Optimization of sugar recovery from rapeseed straw pretreated with FeCl3. Bioresource Technology, 2018, 268: 204–211
https://doi.org/10.1016/j.biortech.2018.07.112
|
18 |
C Lee , T Y Wu , K J Yong , C K Cheng , L F Siow , J M Jahim . Investigation into lewis and bronsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Science of the Total Environment, 2022, 827: 10
https://doi.org/10.1016/j.scitotenv.2022.154049
|
19 |
N Wang , J Zhang , H H Wang , Q Li , S A Wei , D Wang . Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst. Bioresource Technology, 2014, 173: 399–405
https://doi.org/10.1016/j.biortech.2014.09.125
|
20 |
E K New , T Y Wu , S K Tnah , A Procentese , C K Cheng . Pretreatment and sugar recovery of oil palm fronds using choline chloride: calcium chloride hexahydrate integrated with metal chloride. Energy, 2023, 277: 127486
https://doi.org/10.1016/j.energy.2023.127486
|
21 |
X Y Han , X B Zhang , T Dai , J Xie , H D Zhang . Enhancing the co-production of sugars from sugarcane bagasse via CuCl2-catalyzed organosolv pretreatment and additives. Fuel Processing Technology, 2023, 241: 107629
https://doi.org/10.1016/j.fuproc.2022.107629
|
22 |
M M Bradford . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1-2): 248–254
https://doi.org/10.1016/0003-2697(76)90527-3
|
23 |
W J Ying , Y Xu , J H Zhang . Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresource Technology, 2021, 321: 9
https://doi.org/10.1016/j.biortech.2020.124472
|
24 |
Z C Jiang , V L Budarin , J J Fan , J Remón , T Z Li , C W Hu , J H Clark . Sodium chloride-assisted depolymerization of xylo-oligomers to xylose. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4098–4104
https://doi.org/10.1021/acssuschemeng.7b04463
|
25 |
S Q Yao , S X Nie , Y Yuan , S F Wang , C R Qin . Efficient extraction of bagasse hemicelluloses and characterization of solid remainder. Bioresource Technology, 2015, 185: 21–27
https://doi.org/10.1016/j.biortech.2015.02.052
|
26 |
M Y Yang , M S U Rehman , T X Yan , A U Khan , P Oleskowicz-Popiel , X Xu , P Cui , J Xu . Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresource Technology, 2018, 249: 737–743
https://doi.org/10.1016/j.biortech.2017.10.055
|
27 |
R J Wu , X D Wang , Y C Zhang , Y J Fu , M H Qin . Efficient removal of surface-deposited pseudo-lignin and lignin droplets by isothermal phase separation during hydrolysis. Bioresource Technology, 2022, 345: 5
https://doi.org/10.1016/j.biortech.2021.126533
|
28 |
S D Shinde , X Z Meng , R Kumar , A J Ragauskas . Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20(10): 2192–2205
https://doi.org/10.1039/C8GC00353J
|
29 |
R Kumar , S Bhagia , M D Smith , L Petridis , R G Ong , C M Cai , A Mittal , M H Himmel , V Balan , B E Dale , A J Ragauskas , J C Smith , C E Wyman . Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 2018, 20(4): 921–934
https://doi.org/10.1039/C7GC03518G
|
30 |
R Kumar , F Hu , P Sannigrahi , S Jung , A J Ragauskas , C E Wyman . Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 2013, 110(3): 737–753
https://doi.org/10.1002/bit.24744
|
31 |
S R Kamireddy , J B Li , M Tucker , J Degenstein , Y Ji . Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Industrial & Engineering Chemistry Research, 2013, 52(5): 1775–1782
https://doi.org/10.1021/ie3019609
|
32 |
E Jasiukaityte-Grojzdek , M Hus , M Grilc , B Likozar . Acid-catalyzed α-O-4 aryl-ether cleavage mechanisms in (aqueous) γ-valerolactone: catalytic depolymerization reactions of lignin model compound during organosolv pretreatment. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17475–17486
https://doi.org/10.1021/acssuschemeng.0c06099
|
33 |
M C E Santo , D H Fockink , V O A Pellegrini , F E G Guimaraes , E R deAzevedo , L P Ramos , I Polikarpov . Physical techniques shed light on the differences in sugarcane bagasse structure subjected to steam explosion pretreatments at equivalent combined severity factors. Industrial Crops and Products, 2020, 158: 113003
https://doi.org/10.1016/j.indcrop.2020.113003
|
34 |
J Yu , N Paterson , J Blamey , M Millan . Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 2017, 191: 140–149
https://doi.org/10.1016/j.fuel.2016.11.057
|
35 |
Y C Liu , J Xie , N Wu , Y H Ma , C Menon , J Tong . Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose, 2019, 26(8): 4707–4719
https://doi.org/10.1007/s10570-019-02429-6
|
36 |
S De , S Mishra , E Poonguzhali , M Rajesh , K Tamilarasan . Fractionation and characterization of lignin from waste rice straw: biomass surface chemical composition analysis. International Journal of Biological Macromolecules, 2020, 145: 795–803
https://doi.org/10.1016/j.ijbiomac.2019.10.068
|
37 |
J S Luterbacher , J Y Parlange , L P Walker . A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass. Biotechnology and Bioengineering, 2013, 110(1): 127–136
https://doi.org/10.1002/bit.24614
|
38 |
H Y Mou , S B Wu . Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification. Bioresource Technology, 2016, 220: 637–640
https://doi.org/10.1016/j.biortech.2016.08.072
|
39 |
Q L Chu , K Song , J Wang , J G Hu , X Y Chen . Improving enzymatic saccharification of hardwood through lignin modification by carbocation scavengers and the underlying mechanisms. Bioresource Technology, 2019, 294: 9
https://doi.org/10.1016/j.biortech.2019.122216
|
40 |
P Wang , Y Su , W Tang , C X Huang , C H Lai , Z Ling , Q Yong . Revealing enzymatic digestibility of kraft pretreated larch based on a comprehensive analysis of substrate-related factors. Renewable Energy, 2022, 199: 1461–1468
https://doi.org/10.1016/j.renene.2022.08.152
|
41 |
H A Ruiz , M Conrad , S N Sun , A Sanchez , G J M Rocha , A Romaní , E Castro , A Torres , R M Rodríguez-Jasso , L P Andrade , I Smirnova , R C Sun , A S Meyer . Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299: 122685
https://doi.org/10.1016/j.biortech.2019.122685
|
42 |
L Yang , L Q Xu , H Y Yang , Z J Shi , P Zhao , J Yang . Effect of different washing methods on reducing the inhibition of surface lignin in the tetraethylammonium chloride/oxalic acid-based deep eutectic solvent pretreatment. Industrial Crops and Products, 2022, 188: 115728
https://doi.org/10.1016/j.indcrop.2022.115728
|
43 |
M J Cui , X Y Li . Additives enhancing enzymatic hydrolysis of wheat straw to obtain fermentable sugar. Applied Biochemistry and Biotechnology, 2023, 195(2): 1059–1071
https://doi.org/10.1007/s12010-022-04200-3
|
44 |
Y L Loow , T Y Wu , K A Tan , Y S Lim , L F Siow , J M Jahim , A W Mohammad , W H Teoh . Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8349–8363
https://doi.org/10.1021/acs.jafc.5b01813
|
45 |
L H Chen , R Chen , S Y Fu . Preliminary exploration on pretreatment with metal chlorides and enzymatic hydrolysis of bagasse. Biomass and Bioenergy, 2014, 71: 311–317
https://doi.org/10.1016/j.biombioe.2014.09.026
|
46 |
H Y Zhang , Y Xu , S Y Yu . Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresource Technology, 2017, 234: 343–349
https://doi.org/10.1016/j.biortech.2017.02.094
|
47 |
Q Z Yang , W Tang , C L Ma , Y C He . Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst. Bioresource Technology, 2023, 387: 129637
https://doi.org/10.1016/j.biortech.2023.129637
|
48 |
P Moodley , Y Sewsynker-Sukai , E B G Kana . Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: potential for bioethanol production. Bioresource Technology, 2020, 310: 123372
https://doi.org/10.1016/j.biortech.2020.123372
|
49 |
C Zhang , C Y Ma , L H Xu , Y Y Wu , J L Wen . The effects of mild lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood. International Journal of Biological Macromolecules, 2021, 183: 1362–1370
https://doi.org/10.1016/j.ijbiomac.2021.05.091
|
50 |
X Chen , H Y Li , S N Sun , X F Cao , R C Sun . Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Scientific Reports, 2016, 6(1): 39354
https://doi.org/10.1038/srep39354
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|