Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front. Electr. Electron. Eng.    0, Vol. Issue () : 251-259    https://doi.org/10.1007/s11460-008-0066-7
Brief review: frontiers in the computational studies of gene regulations
GU Jin
MOE Key Laboratory of Bioinformatics and Bioinformatics Div, TNLIST / Department of Automation, Tsinghua University
 Download: PDF(255 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Computational methods have greatly expanded our understanding of complex gene regulations in a systematic view. The rapid progress in molecular biology and high-throughput bio-techniques is providing new opportunities and challenges for the computational analysis of gene regulations.
Issue Date: 05 September 2008
 Cite this article:   
GU Jin. Brief review: frontiers in the computational studies of gene regulations[J]. Front. Electr. Electron. Eng., 0, (): 251-259.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-008-0066-7
https://academic.hep.com.cn/fee/EN/Y0/V/I/251
1 Lewin B GeneVIIINew JerseyPrentice Hall 2004
2 Cliften P Sudarsanam P Desikan A et al.Finding functional features in Saccharomyces genomesby phylogenetic footprintingScience 2003 301(5629)7176.
doi:10.1126/science.1084337
3 Harbison C T Gordon D B Lee T I et al.Transcriptional regulatory code of a eukaryoticgenomeNature 2004 431(7004)99104.
doi:10.1038/nature02800
4 Lee I Date S V Adai A T et al.A probabilistic functional network of yeast genesScience 2004 306(5701)15551558.
doi:10.1126/science.1099511
5 Black D L Mechanismsof alternative pre-messenger RNA splicingAnnual Review of Biochemistry 2003 72291336.
doi:10.1146/annurev.biochem.72.121801.161720
6 Blencowe B J Alternativesplicing: new insights from global analysesCell 2006 126(1)3747.
doi:10.1016/j.cell.2006.06.023
7 Lopez A J Alternativesplicing of pre-mRNA: developmental consequences and mechanisms ofregulationAnnual Review Genetics 1998 32279305.
doi:10.1146/annurev.genet.32.1.279
8 Ambros V Thefunctions of animal microRNAsNature 2004 431(7006)350355.
doi:10.1038/nature02871
9 Bartel D P MicroRNAs:genomics, biogenesis, mechanism, and functionCell 2004 116(2)281297.
doi:10.1016/S0092‐8674(04)00045‐5
10 Baulcombe D RNAsilencing in plantsNature 2004 431(7006)356363.
doi:10.1038/nature02874
11 Kim V N Nam J W Genomics of microRNATrends in Genetics 2006 22(3)165173.
doi:10.1016/j.tig.2006.01.003
12 Pennisi E Humangenome. Reaching their goal early, sequencing labs celebrateScience 2003 300(5618)409.
doi: 10.1126/science.300.5618.409
13 Brenner S Johnson M Bridgham J et al.Gene expression analysis by massively parallel signaturesequencing (MPSS) on microbead arraysNatureBiotechnology 2000 18(6)630634.
doi:10.1038/76469
14 Brenner S Williams S R Vermaas E H et al.In vitro cloning of complex mixtures of DNA on microbeads:physical separation of differentially expressed cDNAsProceedings of the National Academy of Sciences of the United Statesof America 2000 97(4)16651670.
doi:10.1073/pnas.97.4.1665
15 Margulies M Egholm M Altman W E et al.Genome sequencing in microfabricated high-densitypicolitre reactorsNature 2005 437(7057)376380
16 Ng P Tan J J Ooi H S et al.Multiplex sequencing of paired-end ditags (MS-PET):a strategy for the ultra-high-throughput analysis of transcriptomesand genomesNucleic Acids Research 2006 34(12)e84.
doi: 10.1093/nar/gkl444
17 Biemar F Nix D A Piel J et al.Comprehensive identification of Drosophila dorsal-ventralpatterning genes using a whole-genome tiling arrayProceedings of the National Academy of Sciences of the United Statesof America 2006 103(34)1276312768.
doi:10.1073/pnas.0604484103
18 Biemar F Zinzen R Ronshaugen M et al.Spatial regulation of microRNA gene expression inthe Drosophila embryoProceedings of theNational Academy of Sciences of the United States of America 2005 102(44)1590715911.
doi:10.1073/pnas.0507817102
19 Cheng J Kapranov P Drenkow J et al.Transcriptional maps of 10 human chromosomes at5-nucleotide resolutionScience 2005 308(5725)11491154.
doi:10.1126/science.1108625
20 Manak J R Dike S Sementchenko V et al.Biological function of unannotated transcriptionduring the early development of Drosophila melanogasterNature Genetics 2006 38(10)11511158.
doi:10.1038/ng1875
21 Gerber A P Luschnig S Krasnow M A et al.Genome-wide identification of mRNAs associated withthe translational regulator PUMILIO in Drosophila melanogasterProceedings of the National Academy of Sciences ofthe United States of America 2006 103(12)44874492.
doi:10.1073/pnas.0509260103
22 Iyer V R Horak C E Scafe C S et al.Genomic binding sites of the yeast cell-cycle transcriptionfactors SBF and MBFNature 2001 409(6819)533538.
doi:10.1038/35054095
23 Lieb J D Liu X Botstein D et al.Promoter-specific binding of rap1 revealed by genome-widemaps of protein-DNA associationNature Genetics 2001 28(4)327334.
doi:10.1038/ng569
24 Ren B Robert F Wyrick J J et al.Genome-wide location and function of DNA bindingproteinsScience 2000 290(5500)23062309.
doi:10.1126/science.290.5500.2306
25 Schwikowski B Uetz P Fields S A network of protein-protein interactions in yeastNature Biotechnology 2000 18(12)12571261.
doi:10.1038/82360
26 Holland H J Adaptationin Natural and Artificial SystemsCambridgeThe MIT Press 1992
27 Rollins R A Haghighi F Edwards J R et al.Large-scale structure of genomic methylation patternsGenome Research 2006 16(2)157163.
doi:10.1101/gr.4362006
28 Amoreira C Hindermann W Grunau C An improved version of the DNA methylation database (MethDB)Nucleic Acids Research 2003 31(1)7577.
doi:10.1093/nar/gkg093
29 Grunau C Renault E Roizes G DNA methylation database “MethDB”: a user guideJournal of Nutrition 2002 132(8 Suppl)2435S2439S
30 Grunau C Renault E Rosenthal A et al.MethDB–a public database for DNA methylationdataNucleic Acids Research 2001 29(1)270274.
doi:10.1093/nar/29.1.270
31 Bhasin M Zhang H Reinherz E L et al.Prediction of methylated CpGs in DNA sequences usinga support vector machineFEBS Letters 2005 579(20)43024308.
doi:10.1016/j.febslet.2005.07.002
32 Fang F Fan S Zhang X et al.Predicting methylation status of CpG islands inthe human brainBioinformatics 2006 22(18)22042209.
doi:10.1093/bioinformatics/btl377
33 Das R Dimitrova N Xuan Z et al.Computational prediction of methylation status inhuman genomic sequencesProceedings of theNational Academy of Sciences of the United States of America 2006 103(28)1071310716.
doi:10.1073/pnas.0602949103
34 Bock C Paulsen M Tierling S et al.CpG island methylation in human lymphocytes is highlycorrelated with DNA sequence, repeats, and predicted DNA structurePLoS Genetics 2006 2(3)e26.
doi: 10.1371/journal.pgen.0020026
35 Hung J H Wang W C Huang H D Systematic identification and repository of RNA editingsite in human genomeInternational ComputerSymposium 2006 13861391
36 He T Du P Li Y dbRES: a web-oriented database for annotated RNA editingsitesNucleic Acids Research 2007 35(Database issue)D141144.
doi:10.1093/nar/gkl815
37 Picardi E Regina T M Brennicke A et al.REDIdb: the RNA editing databaseNucleic Acids Research 2007 35(Database issue)D173177.
doi:10.1093/nar/gkl793
38 Cummings M P Myers D S Simple statistical models predictC-to-U edited sites in plant mitochondrial RNABMC Bioinformatics 2004 5132.
doi: 10.1186/1471‐2105‐5‐132
39 Mower J P PREP-Mt:predictive RNA editor for plant mitochondrial genesBMC Bioinformatics 2005 696.
doi: 10.1186/1471‐2105‐6‐96
40 Thompson J Gopal S Correction: genetic algorithmlearning as a robust approach to RNA editing site site predictionBMC Bioinformatics 2006 7406.
doi: 10.1186/1471‐2105‐7‐406
41 Thompson J Gopal S Genetic algorithm learningas a robust approach to RNA editing site predictionBMC Bioinformatics 2006 7145.
doi: 10.1186/1471‐2105‐7‐145
42 Du P He T Li Y Prediction of C-to-U RNA editing sites in higher plantmitochondria using only nucleotide sequence featuresBiochemical and Biophysical Research Communications 2007 358(1)336341.
doi:10.1016/j.bbrc.2007.04.130
43 Athanasiadis A Rich A Maas S Widespread A-to-I RNA editing of Alu-containing mRNAs inthe human transcriptomePLoS Biology 2004 2(12)e391.
doi: 10.1371/journal.pbio.0020391
44 Stamm S Riethoven J J Le Texier V et al.ASD: a bioinformatics resource on alternative splicingNucleic Acids Research 2006 34(Database issue)D4655.
doi:10.1093/nar/gkj031
45 Thanaraj T A Stamm S Clark F et al.ASD: the Alternative Splicing DatabaseNucleic Acids Research 2004 32(Database issue)D6469.
doi:10.1093/nar/gkh030
46 Ohler U Shomron N Burge C B Recognition of unknown conserved alternatively splicedexonsPLoS Computational Biology 2005 1(2)113122.
doi:10.1371/journal.pcbi.0010015
47 Wang M Marin A Characterization and predictionof alternative splice sitesGene 2006 366(2)219227.
doi:10.1016/j.gene.2005.07.015
48 Xia H Bi J Li Y Identification of alternative 5′/3′ splicesites based on the mechanism of splice site competitionNucleic Acids Research 2006 34(21)63056313.
doi:10.1093/nar/gkl900
49 Griffiths-Jones S miRBase:the microRNA sequence databaseMethods inMolecular Biology 2006 342129138
50 Griffiths-Jones S Grocock R J Van Dongen S et al.miRBase: microRNA sequences, targets and gene nomenclatureNucleic Acids Research 2006 34(Database issue)D140144.
doi:10.1093/nar/gkj112
51 Sethupathy P Corda B Hatzigeorgiou A G TarBase: A comprehensive database of experimentallysupported animal microRNA targetsRNA 2006 12(2)192197.
doi:10.1261/rna.2239606
52 Berezikov E Cuppen E Plasterk R H Approaches to microRNA discoveryNature Genetics 2006 38(Suppl)S27.
doi:10.1038/ng1794
53 Rajewsky N MicroRNAtarget predictions in animalsNature Genetics 2006 38(Suppl)S813.
doi:10.1038/ng1798
54 Sethupathy P Megraw M Hatzigeorgiou A G A guide through present computational approachesfor the identification of mammalian microRNA targetsNature Methods 2006 3(11)881886.
doi:10.1038/nmeth954
55 Bussemaker H J Foat B C Ward L D Predictive modeling of genome-wide mRNA expression: frommodules to moleculesAnnual Review of Biophysicsand Biomolecular Structure 2007 36329347.
doi:10.1146/annurev.biophys.36.040306.132725
56 Grundy W N Bailey T L Elkan C P ParaMEME: a parallel implementation and a web interfacefor a DNA and protein motif discovery toolComputer Applications in Bioscience 1996 12(4)303310
57 Grundy W N Bailey T L Elkan C P et al.Meta-MEME: motif-based hidden Markov models of proteinfamiliesComputer Applications in Bioscience 1997 13(4)397406
58 Liu X S Brutlag D L Liu J S An algorithm for finding protein-DNA binding sites withapplications to chromatin-immunoprecipitation microarray experimentsNature Biotechnology 2002 20(8)835839
59 Schones D E Smith A D Zhang M Q Statistical significance of cis-regulatory modulesBMC Bioinformatics 2007 819.
doi: 10.1186/1471‐2105‐8‐19
60 Xie X Lu J Kulbokas E J et al.Systematic discovery of regulatory motifs in humanpromoters and 3′UTRs by comparison of several mammalsNature 2005 434(7031)338345.
doi:10.1038/nature03441
61 Gu J Fu H The pairwise conservation scores- an algorithm to identify conserved K-mershttp://bioinfo.au.tsinghua.edu.cn/member/∼gujin/pcs/ 2007
62 Roven C Bussemaker H J REDUCE: An online tool forinferring cis-regulatory elements and transcriptional module activitiesfrom microarray dataNucleic Acids Research 2003 31(13)34873490.
doi:10.1093/nar/gkg630
63 Das D Banerjee N Zhang M Q Interacting models of cooperative gene regulationProceedings of the National Academy of Sciences ofthe United States of America 2004 101(46)1623416239.
doi:10.1073/pnas.0407365101
64 Das D Nahle Z Zhang M Q Adaptively inferring human transcriptional subnetworksMolecular Systems Biology 2006 22006.0029.
doi: 10.1038/msb4100067
65 Keles S Van der Laan M J Vulpe C Regulatory motif finding by logic regressionBioinformatics 2004 20(16)27992811.
doi:10.1093/bioinformatics/bth333
66 Zhong W Zeng P Ma P et al.RSIR: regularized sliced inverse regression formotif discoveryBioinformatics 2005 21(22)41694175.
doi:10.1093/bioinformatics/bti680
67 Jaqaman K Danuser G Linking data to models: dataregressionNature Reviews Molecular CellBiology 2006 7(11)813819.
doi:10.1038/nrm2030
68 Visel A Minovitsky S Dubchak I et al.VISTA Enhancer Browser: a database of tissue-specifichuman enhancersNucleic Acids Research 2007 35(Database issue)D8892.
doi:10.1093/nar/gkl822
69 Gallo S M Li L Hu Z et al.REDfly: a regulatory element database for drosophilaBioinformatics 2006 22(3)381383.
doi:10.1093/bioinformatics/bti794
70 Shalgi R Lieber D Oren M et al.Global and local architecture of the mammalian microRNA-transcriptionfactor regulatory networkPLoS ComputationalBiology 2007 3(7)e131.
doi: 10.1371/journal.pcbi.0030131
71 Tsang J Zhu J Van Oudenaarden A MicroRNA-mediated feedback and feedforwardloops are recurrent network motifs in mammalsMolecular Cell 2007 26(5)753767.
doi:10.1016/j.molcel.2007.05.018
72 Ruby J G Jan C H Bartel D P Intronic micro-RNA precursors that bypass Drosha processingNature 2007 448(7149)8386.
doi:10.1038/nature05983
73 Kim Y K Kim V N Processing of intronic microRNAsEMBO Journal 2007 26(3)775783.
doi:10.1038/sj.emboj.7601512
74 Kawahara Y Zinshteyn B Sethupathy P et al.Redirection of silencing targets by adenosine-to-inosineediting of miRNAsScience 2007 315(5815)11371140.
doi:10.1126/science.1138050
75 Vermeirssen V Barrasa M I Hidalgo C A et al.Transcription factor modularity in a gene-centeredCelegans core neuronal protein-DNA interaction networkGenome Research 2007 17(7)10611071.
doi:10.1101/gr.6148107
76 Deplancke B Mukhopadhyay A Ao W et al.A gene-centered C. elegans protein-DNA interactionnetworkCell 2006 125(6)11931205.
doi:10.1016/j.cell.2006.04.038
77 Davidson E H Rast J P Oliveri P et al.A genomic regulatory network for developmentScience 2002 295(5560)16691678.
doi:10.1126/science.1069883
78 Chaves M Albert R Sontag E D Robustness and fragility of Boolean models for geneticregulatory networksJournal of TheoreticalBiology 2005 235(3)431449.
doi:10.1016/j.jtbi.2005.01.023
79 Kitano H Towardsa theory of biological robustnessMolecularSystems Biology 2007 3137.
doi: 10.1038/msb4100179
80 Albert R Barabasi A L Statistical mechanics of complexnetworksReviews of Modern Physics 2002 74(1)4797.
doi:10.1103/RevModPhys.74.47
81 Jeong H Tombor B Albert R et al.The large-scale organization of metabolic networksNature 2000 407(6804)651654.
doi:10.1038/35036627
82 Jeong H Mason S P Barabasi A L et al.Lethality and centrality in protein networksNature 2001 411(6833)4142.
doi:10.1038/35075138
83 Milo R Shen-Orr S Itzkovitz S et al.Network motifs: simple building blocks of complexnetworksScience 2002 298(5594)824827.
doi:10.1126/science.298.5594.824
84 Shen-Orr S S Milo R Mangan S et al.Network motifs in the transcriptional regulationnetwork of Escherichia coliNature Genetics 2002 31(1)6468.
doi:10.1038/ng881
85 Haykin S NeuralNetworks: A Comprehensive Foundation(2nd edition) New JerseyPrentice Hall 1998
86 Prill R J Iglesias P A Levchenko A Dynamic properties of network motifs contribution to biologicalnetwork organizationPLoS Biology 2005 3(11)e343.
doi: 10.1371/journal.pbio.0030343
87 Kitano H BiologicalrobustnessNature Review of Genetics 2004 5(11)826837.
doi:10.1038/nrg1471
88 Kitano H Thetheory of biological robustness and its implication in cancerErnst Schering Research Foundation Workshop 2007 616988
89 Kitano H Biologicalrobustness in complex host-pathogen systemsProgress in Drug Research 2007 64(239)241263
90 Kitano H Systemsbiology: a brief overviewScience 2002 295(5560)16621664.
doi:10.1126/science.1069492
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed