Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front. Electr. Electron. Eng.    2008, Vol. 3 Issue (4) : 371-375    https://doi.org/10.1007/s11460-008-0079-2
A more robust Boolean model describing inhibitor binding
XIE Zhaoqian Steven1, TANG Chao2
1.Center for Theoretical Biology, Peking University;Departments of Physics and Mathematics, the University of Hong Kong, ; 2.Center for Theoretical Biology, Peking University;Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94158, USA;
 Download: PDF(89 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract From the first application of the Boolean model to the cell cycle regulation network of budding yeast, new regulative pathways have been discovered, particularly in the G1/S transition circuit. This discovery called for finer modeling to study the essential biology, and the resulting outcomes are first introduced in the article. A traditional Boolean network model set up for the new G1/S transition circuit shows that it cannot correctly simulate real biology unless the model parameters are fine tuned. The deficiency is caused by an overly coarse-grained description of the inhibitor binding process, which shall be overcome by a two-vector model proposed whose robustness is surveyed using random perturbations. Simulations show that the proposed two-vector model is much more robust in describing inhibitor binding processes within the Boolean framework.
Issue Date: 05 December 2008
 Cite this article:   
XIE Zhaoqian Steven,TANG Chao. A more robust Boolean model describing inhibitor binding[J]. Front. Electr. Electron. Eng., 2008, 3(4): 371-375.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-008-0079-2
https://academic.hep.com.cn/fee/EN/Y2008/V3/I4/371
1 Bornholdt S . Systemsbiology: Less is more in modeling large genetic networks. Science, 2005, 310(5747): 449–451.
doi:10.1126/science.1119959
2 Li F T, Long T, Lu Y, et al.. The yeast cell-cycle network is robustly designed. Proceedings of the National Academy of Sciencesof the United States of America, 2004, 101(14): 4781–4786.
doi:10.1073/pnas.0305937101
3 Kauffman S A . The Origins of Order: Self-Organization and Selection in Evolution. New York: Oxford University Press, 1993
4 Albert R, Othmer H G . The topology of the regulatoryinteractions predicts the expression pattern of the segment polaritygenes in Drosophila melanogaster. Journalof Theoretical Biology, 2003, 223(1): 1–18.
doi:10.1016/S0022-5193(03)00035-3
5 Davidich M I, Bornholdt S . Boolean network model predictscell cycle sequence of fission yeast. PLoSONE, 2008, 3(2): e1672.
doi: 10.1371/journal.pone.0001672
6 Rubinstein A, Gurevich V, Kasulin-Boneh. , et al.. Faithful modeling of transient expression andits application to elucidating negative feedback regulation. Proceedings of the National Academy of Sciencesof the United States of America, 2007 104(15): 6241–6246.
doi:10.1073/pnas.0611168104
7 de Bruin R A, Kalashnikova T I, Chahwan C, et al.. Constraining G1-specific transcription to lateG1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Molecular Cell, 2006, 23(4): 483–496.
doi:10.1016/j.molcel.2006.06.025
8 de Bruin R A, McDonald W H, Kalashnikova T I, et al.. Cln3 activates G1-specific transcription viaphosphorylation of the SBF bound repressor Whi5. Cell, 2004, 117(7): 887–898.
doi:10.1016/j.cell.2004.05.025
9 Costanzo M, Nishikawa J L, Tang X, et al.. CDK activity antagonizes Whi5, an inhibitorof G1/S transcription in yeast. Cell, 2004, 117(7): 899–913.
doi:10.1016/j.cell.2004.05.024
10 Braunewell S, Bornholdt S . Superstability of the yeastcell-cycle dynamics: ensuring causality in the presence of biochemicalstochasticity. Journal of Theoretical Biology, 2007, 245(4): 638–643.
doi:10.1016/j.jtbi.2006.11.012
11 Morgan D O . The Cell Cycle: Principles of Control. New York: Oxford University Press, 2006, Chapter 3
12 Verma R, Annan R S, Huddleston M J, et al.. Phosphorylation of Sic1p by G1 Cdk requiredfor its degradation and entry into S phase. Science, 1997, 278(5337): 455–460
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed