Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (2) : 239-242    https://doi.org/10.1007/s11460-009-0029-7
RESEARCH ARTICLE
Analysis of band gap of non-bravais lattice photonic crystal fiber
Yichao MA(), Heming CHEN
College of Optoelectronic Engineering and Institute of Optical Communications, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
 Download: PDF(234 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article designs a novel type of non-bravais lattice photonic crystal fiber. To form the nesting complex-period with positive and negative refractive index materials respectively, a cylinder with the same radius and negative refractive index is introduced into the center of each lattice unit cell in the traditional square lattice air-holes photonic crystal fiber. The photonic band-gap of the photonic crystal fiber is calculated numerically by the plane wave expansion method. The result shows that compared with the traditional square photonic band-gap fiber (PBGF), when R/Λ is 0.35, the refractive index of the substrate, air-hole, and medium-column are 1.30, 1.0, and -1.0, respectively. This new PBGF can transmit signal by the photonic band-gap effect. When the lattice constant Λ varies from 1.5 μm to 3.0 μm, the range of the wavelength ranges from 880 nm to 2300 nm.

Keywords photonic crystal fiber      negative refractive index      non-bravais lattice      photonic band-gap     
Corresponding Author(s): MA Yichao,Email:my-chao@hotmail.com   
Issue Date: 05 June 2009
 Cite this article:   
Yichao MA,Heming CHEN. Analysis of band gap of non-bravais lattice photonic crystal fiber[J]. Front Elect Electr Eng Chin, 2009, 4(2): 239-242.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0029-7
https://academic.hep.com.cn/fee/EN/Y2009/V4/I2/239
Fig.1  (a) Structure of traditional square lattice photonic crystal; (b) structure of non-bravais lattice photonic crystal
Fig.2  Band-gap diagram of photonic crystal fiber. (a) Traditional square lattice; (b) band-gap of non-bravais lattice PCFs
Fig.3  Band-gap of non-bravais lattice PCFs with different refractive index of substrate. (a) ; (b)
Fig.4  Band-gap of non-bravais lattice PCFs with different . (a) ; (b)
1 Russell P St J, Knight J C, Birks T A, Mangan S J, Wadsworth W J. Recent progress in photonic crystal fibres. In: Proceedings of Optical Fiber Communication Conference 2000 , 2000, 3: 98-100
2 Veselago V G. The electrodynamics of substances with simultaneously negative values of ? and μ. Soviet Physics Uspekhi , 1968, 10(4): 509-514
doi: 10.1070/PU1968v010n04ABEH003699
3 Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters , 2002, 80(6): 1097-1099
doi: 10.1063/1.1448172
4 Smith D R, Kroll N. Negative refractive index in left-handed materials. Physical Review Letters , 2000, 85(14): 2933-2936
doi: 10.1103/PhysRevLett.85.2933
5 Guo S P, Albin S. Simple plane wave implementation for photonic crystal calculations. Optics Express , 2003, 11(2): 167-175
6 Chen H M, Zhang L, Rong J X. A study on the air guiding condition of lightwave in photonic bandgap fibers. Journal of Nanjing University of Posts and Telecommunications , 2004, 24(4): 67-70 (in Chinese)
7 Wang J L, Chen H M. Study of complete photonic band gap in two-dimensional chessboard of non-Bravais lattice. Acta Physica Sinica , 2007, 56(2): 922-926 (in Chinese)
8 Wang R, Wang X H, Gu B Y, Yang G Z. Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals. Journal of Applied Physics , 2001, 90(9): 4307-4313
doi: 10.1063/1.1406965
9 Anderson C M, Giapis K P. Larger two-dimensional photonic band gaps. PhysicalReview Letters , 1996, 77(14): 2949-2952
doi: 10.1103/PhysRevLett.77.2949
10 Agio M, Andreani L C. Complete photonic band gap in two-dimensional chessboard lattice. Physical Review B , 2000, B61(23): 15519-15522
doi: 10.1103/PhysRevB.61.15519
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed