Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (2) : 220-226    https://doi.org/10.1007/s11460-009-0039-5
RESEARCH ARTICLE
Power system transient stability simulation under uncertainty based on Taylor model arithmetic
Shouxiang WANG(), Zhijie ZHENG, Chengshan WANG
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
 Download: PDF(188 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Taylor model arithmetic is introduced to deal with uncertainty. The uncertainty of model parameters is described by Taylor models and each variable in functions is replaced with the Taylor model (TM). Thus, time domain simulation under uncertainty is transformed to the integration of TM-based differential equations. In this paper, the Taylor series method is employed to compute differential equations; moreover, power system time domain simulation under uncertainty based on Taylor model method is presented. This method allows a rigorous estimation of the influence of either form of uncertainty and only needs one simulation. It is computationally fast compared with the Monte Carlo method, which is another technique for uncertainty analysis. The proposed method has been tested on the 39-bus New England system. The test results illustrate the effectiveness and practical value of the approach by comparing with the results of Monte Carlo simulation and traditional time domain simulation.

Keywords interval arithmetic      power systems      Taylor series expansion      Taylor model      time domain simulation      transient stability      uncertainty     
Corresponding Author(s): WANG Shouxiang,Email:sxwang@tju.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Shouxiang WANG,Zhijie ZHENG,Chengshan WANG. Power system transient stability simulation under uncertainty based on Taylor model arithmetic[J]. Front Elect Electr Eng Chin, 2009, 4(2): 220-226.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0039-5
https://academic.hep.com.cn/fee/EN/Y2009/V4/I2/220
Fig.1  One line diagram of 10-unit 39-bus New England system
unit No.H/smechanical input
1500.010
230.35.208
335.86.5
428.66.32
526.05.08
634.86.5
726.45.6
824.35.4
934.58.3
1042.02.5
Tab.1  Unit data of 10-unit system
integration stepTaylor model arithmeticMonte Carlotraditional simulation
10[-12.532764,-11.013567][-12.532764,-11.013796]-11.772908
20[-12.533280,-7.531015][-12.533223,-7.531817]-10.020688
30[-8.368736,-0.231360][-8.368679,-0.232678]-4.223501
40[-2.158733, 6.256183][-2.158676, 6.253720]2.226743
50[ 1.685871, 6.992434][ 1.685871, 6.987965]4.514621
60[ 0.200306, 1.252543][ 0.200306, 1.248074]0.769196
70[-6.554236,-5.304443][-6.548449,-5.312064]-6.049861
80[-11.274033,-10.850159][-11.238223,-10.920289]-11.220805
90[-13.580589,-8.889154][-13.467946,-8.998130]-11.402318
100[-10.862248,-1.812667][-10.768455,-1.900386]-6.293941
110[-4.768900, 5.357614][-4.758414, 5.352858]0.641827
120[0.526720, 7.423871][ 0.528611, 7.417282]4.447814
130[1.426608, 2.687688][1.426665, 2.670728]2.306155
140[-5.388267,-2.659154][-5.282384,-2.782226]-4.198004
150[-10.417461,-8.845322][-10.390876,-8.854547]-10.074317
Tab.2  Rotor angle of G1 at each integration step
Fig.2  Rotor angle of G1
Fig.3  Rotor angle of G10
Fig.4  Rotor angle of G1
Fig.5  Rotor angle of G1
Fig.6  Rotor angle of G8
Fig.7  Rotor angle of G8
1 Kosterev D N, Tylor C W, Mittelstadt W A. Model validation for the August 10, 1996 WSCC system outage. IEEE Transactions on Power Systems , 1999, 14(3): 967–979
doi: 10.1109/59.780909
2 Dopazo J F, Klitin O A, Sasson A M. Stochastic load flows. IEEE Transactions on Power Apparatus and Systems , 1975, 94(2): 299–309
doi: 10.1109/T-PAS.1975.31855
3 Allan R N, Billinton R, Breipohl A M, Grigg C H. Bibliography on the application of probability methods in power system reliability evaluation 1992-1996. IEEE Transactions on Power Systems , 1999, 14(1): 51–57
doi: 10.1109/59.744483
4 Timko K J, Bose A, Anderson P M. Monte Carlo simulation of power system stability. IEEE Transactions on Power Apparatus and Systems , 1983, PAS-102(10): 3453–3459
doi: 10.1109/TPAS.1983.317843
5 Anderson P M, Bose A. A probabilistic approach to power system stability analysis. IEEE Transactions on Power Apparatus and Systems , 1983, PAS-102(8): 2430–2439
doi: 10.1109/TPAS.1983.317742
6 Wu F F, Tsai Y K. Probabilistic dynamic security assessment of power systems I: basic model. IEEE Transactions on Circuits and Systems , 1983, 30(3): 148–159
doi: 10.1109/TCS.1983.1085344
7 Hiskens I A, Pai M A, Nguyen T B. Bounding uncertainty in power system dynamic simulations. In: Proceedings of IEEE Power Engineering Society Winter Meeting, Singapore . 2000, 2: 1533–1537
8 Hockenberry J R, Lesieutre B C. Evaluation of uncertainty in dynamic simulations of power system models: the probabilistic collocation method. IEEE Transactions on Power Systems , 2004, 19(3): 1483–1491
doi: 10.1109/TPWRS.2004.831689
9 Moore R E. Interval arithmetic and automatic error analysis in digital computing. Dissertation for the Doctoral Degree. Stanford: Stanford University, 1962
10 Alefeld G, Mayer G. Interval analysis: theory and applications. Journal of Computational and Applied Mathematics , 2000, 121(1-2): 421–464
doi: 10.1016/S0377-0427(00)00342-3
11 Hickey T, Ju Q, Van Emden M H. Interval arithmetic: from principles to implementation. Journal of the ACM , 2001, 48(5): 1038–1068
doi: 10.1145/502102.502106
12 Wang Z, Alvarado F L. Interval arithmetic in power flow analysis. IEEE Transactions on Power Systems , 1992, 7(3): 1341–1349
doi: 10.1109/59.207353
13 Das B. Radial distribution system power flow using interval arithmetic. International Journal of Electrical Power & Energy Systems , 2002, 24(10): 827–836
doi: 10.1016/S0142-0615(01)00092-8
14 Sari? A T, Stankovi? A M. An application of interval analysis and optimization to electric energy markets. IEEE Transactions on Power Systems , 2006, 21(2): 515–523
doi: 10.1109/TPWRS.2006.874539
15 Chaturvedi A, Prasad K, Ranjan R. Use of interval arithmetic to incorporate the uncertainty of load demand for radial distribution system analysis. IEEE Transactions on Power Delivery , 2006, 21(2): 1019–1021
doi: 10.1109/TPWRD.2005.848436
16 Berz M, Hoffstatter G. Computation and application of Taylor polynomials with interval remainder bounds. Reliable Computing , 1998, 4(1): 83–97
doi: 10.1023/A:1009958918582
17 Makino K. Rigorous Analysis of nonlinear motion in particle accelerators. Dissertation for the Doctoral Degree. East Lansing: Michigan State University, 1998
18 Neumaier A. Taylor forms–use and limits. Reliable Computing , 2003, 9(1): 43–79
doi: 10.1023/A:1023061927787
19 Revol N, Makino K, Berz M. Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. Journal of Logic and Algebraic Programming , 2005, 64(1): 135–154
doi: 10.1016/j.jlap.2004.07.008
20 Makino K, Berz M. Taylor models and other validated functional inclusion methods. International Journal of Pure and Applied Mathematics , 2003, 4(4): 379–456
21 Barrio R. Performance of the Taylor series method for ODEs/DAEs. Applied Mathematics and Computation , 2005, 163(2): 525–545
doi: 10.1016/j.amc.2004.02.015
22 Pai M A. Energy Function Analysis for Power System Stability. Norwell, MA: Kluwer Academic Publishers, 1989
[1] Yanhong LIU, Jianyong LI, Chunwen LI. Robust excitation control of multi-machine multi-load power systems using Hamiltonian function method[J]. Front Elect Electr Eng Chin, 2011, 6(4): 547-555.
[2] Jun WANG, Guangguo BI. A design of multi-cycle detector for cognitive radios[J]. Front Elect Electr Eng Chin, 2011, 6(4): 501-506.
[3] WANG Yanqing, PANG Xiumei, JIANG Changsheng. Delay-dependent robust controller design for a class of nonlinear uncertainty time-delay systems with input delay[J]. Front. Electr. Electron. Eng., 2008, 3(2): 234-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed