Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (3) : 307-312    https://doi.org/10.1007/s11460-009-0051-9
RESEARCH ARTICLE
Novel anomaly detection approach for telecommunication network proactive performance monitoring
Yanhua YU(), Jun WANG, Xiaosu ZHAN, Junde SONG
School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
 Download: PDF(125 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mode of telecommunications network management is changing from “network oriented” to “subscriber oriented”. Aimed at enhancing subscribers’ feeling, proactive performance monitoring (PPM) can enable a fast fault correction by detecting anomalies designating performance degradation. In this paper, a novel anomaly detection approach is the proposed time series prediction and the associated confidence interval based on multiplicative autoregressive integrated moving average (ARIMA). Furthermore, under the assumption that the training residual is a white noise process following a normal distribution, the associated confidence interval of prediction can be figured out under any given confidence degree 1-α by constructing random variables satisfying t distribution. Experimental results verify the method’s effectiveness.

Keywords proactive performance monitoring (PPM)      anomaly detection      time series prediction      autoregressive integrated moving average (ARIMA)      white noise      confidence interval     
Corresponding Author(s): YU Yanhua,Email:yhyu_bupt@sina.com.cn   
Issue Date: 05 September 2009
 Cite this article:   
Xiaosu ZHAN,Junde SONG,Yanhua YU, et al. Novel anomaly detection approach for telecommunication network proactive performance monitoring[J]. Front Elect Electr Eng Chin, 2009, 4(3): 307-312.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0051-9
https://academic.hep.com.cn/fee/EN/Y2009/V4/I3/307
serial numbertraffic loadserial numbertraffic load
12390.78242255.08
22339.33252059.54
32338.28262126.38
42180.47272224.18
52123.48282195.08
62474.97292291.37
72495.80302215.82
82416.97312255.40
92363.72322072.70
102373.28332026.81
112140.83342232.00
122109.89352260.35
132337.10362228.08
142254.07372209.13
152224.28382138.39
162228.55392104.45
172252.30402098.13
182121.81412295.53
192075.98422239.32
202331.03432273.12
212278.63442266.90
222255.06452101.47
232264.72
Tab.1  Hourly traffic load series at 9:00 from 2007-7-4 to 2007-8-17
Fig.1  Autocorrelation function of {}
Fig.2  Autocorrelation function of {}
2007-8-102007-8-112007-8-122007-8-132007-8-142007-8-152007-8-162007-8-17
actual 2238.392104.452098.252295.532239.322273.122266.92101.47
prediction2249.5782056.2272069.2712233.7992248.3852255.0762240.7872245.69
absolute error (AE)11.18848.22328.97961.7319.06518.04426.113144.22
APE0.500%2.291%1.381%2.689%0.405%0.794%1.152%6.863%
lower bound2166.161974.041984.452119.732140.272151.332138.712156.72
upper bound2338.582138.412154.092347.862356.492358.822342.852364.56
Tab.2  Prediction for 9:00 2007-8-10 till 9:00 2007-8-17
Fig.3  Prediction value, actual value, thresholds for traffic from 2007-8-10 to 2007-8-17
1 Hellerstein J L, Zhang F, Shahabuddin P. An approach to predictive detection for service management. In: Proceedings of the 6th IFIP/IEEE International Symposium on Integrated Network Management , 1999, Sloman M, Mazumdar S, Lupu E, Eds. New York: IEEE Publishing, 1999, 309-322
2 Feather F, Siewiorek D, Maxion R. Fault detection in an Ethernet network using anomaly signature matching. ACM SIGCOMM Computer Communication Review , 1993, 23(4): 279-288
doi: 10.1145/167954.166264
3 Ho L L, Cavuto D J, Papavassiliou S, Zawadki A G. Adaptive and automated detection of service anomalies in transaction-oriented WANs: network analysis, algorithms, implementation, and deployment. IEEE Journal on Selected Areas in Communications , 2000, 18 (5): 744-757
doi: 10.1109/49.842990
4 Li J, Liu X X, Han Z J. Research on the ARMA-based traffic prediction algorithm for wireless sensor network. Journal of Electronics and Information Technology , 2007, 29(5): 1224-1227 (in Chinese)
5 Cadzow J A. ARMA time series modeling: an effective method. IEEE Transactions on Aerospace and Electronic Systems , 1983, AES-19(1): 49-58
doi: 10.1109/TAES.1983.309419
6 Versace M, Bhatt R, Hinds O, Shiffer M. Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks. Expert Systems with Applications , 2004, 27(3): 417-425
doi: 10.1016/j.eswa.2004.05.018
7 Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines. In: Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing , 1997, 511-520
8 Shi Z W, Han M. Support vector echo-state machine for chaotic time-series prediction. IEEE Transactions on Neural Networks , 2007, 18(2): 359-372
doi: 10.1109/TNN.2006.885113
9 Cao L J, Tay F E H. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks , 2003, 14(6): 1506-1518
doi: 10.1109/TNN.2003.820556
[1] Xiaojun SUN, Guangming YAN. Time-varying optimal distributed fusion white noise deconvolution estimator[J]. Front Elect Electr Eng, 2012, 7(3): 318-325.
[2] Xiaojun SUN, Zili DENG. Distributed fusion white noise deconvolution estimators[J]. Front Elect Electr Eng Chin, 2009, 4(3): 270-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed