Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front. Electr. Electron. Eng.    2009, Vol. 4 Issue (4) : 397-408    https://doi.org/10.1007/s11460-009-0060-8
Research articles
Distributed cooperative formation of multiple mobile agents with preserved connectivity
Xiaoli LI,Yugeng XI,
Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China;
 Download: PDF(352 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper investigates distributed cooperative formation control of a group of multiple mobile agents with a virtual leader, where information exchange among agents is modeled by the group topology, and the states of the virtual leader are known only by parts of the agents. We develop a class of distributed formation control laws with similar form. The steered group is proved to achieve the desired formation objectives as long as the intersection of the initial communication topology and the formation goal topology is connected. This requirement of connectivity can be easily achieved by many practical applications; consequently, our developed distributed control laws are effective and feasible. Furthermore, for the developed control laws, we show the influence of different information flow graph of agents on the convergence rate and robustness to node and connection failures.
Keywords distributed cooperative control      formation      connectivity      stability      LaSalle’s invariance principle      
Issue Date: 05 December 2009
 Cite this article:   
Xiaoli LI,Yugeng XI. Distributed cooperative formation of multiple mobile agents with preserved connectivity[J]. Front. Electr. Electron. Eng., 2009, 4(4): 397-408.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0060-8
https://academic.hep.com.cn/fee/EN/Y2009/V4/I4/397
Cao Y U, Fukunaga A S, Kahng A B. Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 1997, 4(1): 7―27

doi: 10.1023/A:1008855018923
Lionis G, Kyriakopoulos KJ. Approximatecontrol of formations of multiagent systems. In: Proceedings of the 44th IEEE Conference on Decision and Control andthe European Control Conference. 2005, 4958―4963
Chen Y Q, Wang Z. Formation control: a reviewand a new consideration. In: Proceedingsof IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005, 3181―3186
Do K D. Formation control of mobile agents using local potential functions. In: Proceedings of the 2006 American Control Conference. 2006, 2148―2153
Lafferriere G, Williams A, Caughman J, Veerman J J P. Decentralized control of vehicle formations. Systems and Control Letters, 2005, 54(9): 899―910

doi: 10.1016/j.sysconle.2005.02.004
Fax J A, Murray R M. Information flow and cooperativecontrol of vehicle formations. IEEE Transactionson Automatic Control, 2004, 49(9): 1465―1476

doi: 10.1109/TAC.2004.834433
Tanner H G, Kumar A. Formation stabilization ofmultiple agents using decentralized navigation functions. Robotics: Science and Systems, 2005, 49―56
De Gennaro M C, Jadbabaie A. Formation control for a cooperativemulti-agent system using decentralized navigation functions. In: Proceedings of the 2006 American Control Conference. 2006, 1346―1351
Do K D. Formation control of mobile agents using local potential functions. In: Proceedings of the 2006 American Control Conference. 2006, 2148―2153
Leonard N E, Fiorelli E. Virtual leaders, artificialpotentials, and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control. 2001, 3: 2968―2973
Ando H, Oasa Y, Suzuki I, Yamashita M. Distributed memoryless point convergence algorithm for mobile robotswith limited visibility. IEEE Transactionson Robotics and Automation, 1999, 15(5): 818―828

doi: 10.1109/70.795787
Spanos D P, Murray R M. Robust connectivity of networkedvehicles. In: Proceedings of the 43rd IEEEConference on Decision and Control. 2004, 3: 2893―2898
Ji M, Egerstedt M. Connectedness preservingdistributed coordination control over dynamic graphs. In: Proceedings of the 2005 American Control Conference. 2005, 93―98
Ji M, Egerstedt M. Distributed formation controlwhile preserving connectedness. In: Proceedingsof the 45th IEEE Conference on Decision and Control. 2006, 5962―5967
Li X, Xi Y. Distributed formation algorithmfor multi-agent systems with a relaxed connectivity condition. In: Proceedings of the 17th IFAC World Congress. 2008
Zavlanos M M, Jadbabaie A, Pappas G J. Flocking while preserving network connectivity. In: Proceedings of the 46th IEEE Conference onDecision and Control. 2007, 2919―2924
Mohar B. The Laplacian spectrum of graphs. GraphTheory, Combinatorics, and Applications, 1991, 2: 871―898
Jamakovic A, Uhlig S. On the relationship betweenthe algebraic connectivity and graph’s robustness to node andlink failures. In: Proceedings of the 3rdEuroNGI Conference on Next Generation Internet Networks. 2007, 96―102
Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401―420

doi: 10.1109/TAC.2005.864190
Tanner H G, Jadbabaie A, Pappas G J. Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 2007, 52(5): 863―868

doi: 10.1109/TAC.2007.895948
[1] Xiaojun SUN, Guangming YAN. Time-varying optimal distributed fusion white noise deconvolution estimator[J]. Front Elect Electr Eng, 2012, 7(3): 318-325.
[2] Ke XIE, Huijia YU, Rongwei CEN. Using log mining to analyze user behavior on search engine[J]. Front Elect Electr Eng, 2012, 7(2): 254-260.
[3] Xihong WU, Jing CHEN. A computational model for assessment of speech intelligibility in informational masking[J]. Front Elect Electr Eng, 2012, 7(1): 107-115.
[4] Cheng-Yuan LIOU, Ming-Shing CHEN, Daw-Chih LIOU. Information in hierarchical modular system[J]. Front Elect Electr Eng Chin, 2011, 6(1): 181-189.
[5] Kazushi IKEDA, Daisuke KOMAZAWA, Hiroyuki FUNAYA. Information geometry in neural spike sequences[J]. Front Elect Electr Eng Chin, 2011, 6(1): 146-150.
[6] Yixin ZHONG. A conjecture on mechanism of information understanding[J]. Front Elect Electr Eng Chin, 2010, 5(4): 411-418.
[7] Zhongliang DENG, Yuetao GE, Weiguo GUAN, Ke HAN. Underwater map-matching aided inertial navigation system based on multi-geophysical information[J]. Front Elect Electr Eng Chin, 2010, 5(4): 496-500.
[8] Yanda LI, . Life and information[J]. Front. Electr. Electron. Eng., 2010, 5(3): 405-410.
[9] Alan YUILLE, . An information theory perspective on computational vision[J]. Front. Electr. Electron. Eng., 2010, 5(3): 329-346.
[10] Shun-ichi AMARI, . Information geometry in optimization, machine learning and statistical inference[J]. Front. Electr. Electron. Eng., 2010, 5(3): 241-260.
[11] Ying CAO, Xin HAO, Xiaoen ZHU, Shunren XIA, . An adaptive region growing algorithm for breast masses in mammograms[J]. Front. Electr. Electron. Eng., 2010, 5(2): 128-136.
[12] Haiyun AN, Hongjie JIA, Yuan ZENG, Wei WEI, . Equivalence of stability criteria for time-delay systems[J]. Front. Electr. Electron. Eng., 2010, 5(2): 207-217.
[13] Wenhan YANG, Yinghua LU, Jun XU, . Video information recovery from EM leakage of computers based on storage oscilloscope[J]. Front. Electr. Electron. Eng., 2010, 5(2): 143-146.
[14] Chenjian RAN, Zili DENG, Guili TAO, Jinfang LIU, . Convergence analysis of self-tuning Riccati equation for systems with correlation noises[J]. Front. Electr. Electron. Eng., 2009, 4(4): 409-416.
[15] Xiaojun SUN, Zili DENG. Distributed fusion white noise deconvolution estimators[J]. Front Elect Electr Eng Chin, 2009, 4(3): 270-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed