Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front. Electr. Electron. Eng.    2010, Vol. 5 Issue (2) : 218-223    https://doi.org/10.1007/s11460-010-0002-5
Research articles
A novel measurement method of temperature model for bioreactor
Minghui HU1,Fuzhen XUAN1,Huihe SHAO2,
1.Key Laboratory of Safety Science of Pressurized System, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; 2.School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
 Download: PDF(206 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel measurement method of temperature model for bioreactor has been proposed. Temperature is the key parameter in monitoring the bioreactor operation. However, the system input signal of bioreactor is delayed, and model parameters are uncertain, so the output of temperature is non-steady-state. Many dynamic measurements are not steady so that it cannot be described by variables constant in time. In this paper, we adopt the monopulse signal as input so that the output of the bioreactor system is steady. This method has a powerful ability to steady the output of the bioreactor. In view of the measurement results, it can be seen that the model dynamic measurement approaches the real process. The analytical expression of the monopulse response for the temperature model of the bioreactor is obtained. The novel measurement approach is simple and can be easily adopted by industry.
Keywords measurement method      temperature model      monopulse response      time-variant      bioreactor      
Issue Date: 05 June 2010
 Cite this article:   
Minghui HU,Huihe SHAO,Fuzhen XUAN. A novel measurement method of temperature model for bioreactor[J]. Front. Electr. Electron. Eng., 2010, 5(2): 218-223.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-010-0002-5
https://academic.hep.com.cn/fee/EN/Y2010/V5/I2/218
Hessling J P. A novel method of evaluating dynamic measurement uncertaintyutilizing digital filters. Measurement Science and Technology, 2009, 20(5): 055106

doi: 10.1088/0957-0233/20/5/055106
Barrón M A, Aguilar R. Dynamic behaviour of a continuous stirred bioreactor under control input saturation. Journal of Chemical Technology and Biotechnology, 1998, 72(1): 15–18

doi: 10.1002/(SICI)1097-4660(199805)72:1<15::AID-JCTB864>3.0.CO;2-X
Dondo R G, Marqués D. Optimal control of a batch bioreactor: a study on the use of an imperfectmodel. Process Biochemistry, 2001, 37(4): 379–385

doi: 10.1016/S0032-9592(01)00218-7
Ziegler J G, Nichols N B. Optimum settings for automatic controllers. Transactions of the American Society of Mechanical Engineers, 1942, 64(11): 759–768
Kim D W, Shen F, Chen X, Wang A. Simultaneous measurement of refractive index and temperature based on a reflection-modelong-period grating and an intrinsic Fabry-Perot interferometer sensor. Optics Letter, 2005, 30(22): 3000–3002

doi: 10.1364/OL.30.003000
Engin S N, Yildiz F, Ince M, Onkal Engin G, Keskinler B. Modeling and parameter identification of a jet-loop bioreactor. In: Proceedings of American Control Conference. 2007, 6122–6127
Tatiraju S, Soroush M, Mutharasan R. Multi-rate nonlinear stateand parameter estimation in a bioreactor. In: Proceedings of the 1998 American Control Conference. 1998, 4: 2324–2328
Banik G C, Viraraghavan T, Dague R R. Low temperature effects onanaerobic microbial kinetic parameters. Environmental Technology, 1998, 19(5): 503–512

doi: 10.1080/09593331908616706
Lettinga G, Rebac S, Zeeman G. Challenge of psychrophilic anaerobicwastewater treatment. Trends in Biotechnology, 2001, 19(9): 363–370

doi: 10.1016/S0167-7799(01)01701-2
Bergamo C M, Monaco R D, Ratusznei S M. Effects of temperature atdifferent organic loading levels on the performance of a fluidized-bedanaerobic sequencing batch bioreactor. Chemical Engineering and Processing, 2009, 48(3): 789–796

doi: 10.1016/j.cep.2008.10.003
Kozlov A G. Frequency response model for thermal radiation microsensors. Measurement Science and Technology, 2009, 20(4): 045204

doi: 10.1088/0957-0233/20/4/045204
Antonini C, Persico G, Rowe A L. Prediction of the dynamicresponse of complex transmission line systems for unsteady pressuremeasurements. Measurement Science and Technology, 2008, 19(12): 125401

doi: 10.1088/0957-0233/19/12/125401
Link A, Elster C. Uncertainty evaluation for IIR (infinite impulse response) filtering using a state-space approach. Measurement Science and Technology, 2009, 20(5): 055104

doi: 10.1088/0957-0233/20/5/055104
Rettig F, Mpps R. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results forfast hydrocarbon sensors. Measurement Science and Technology, 2009, 20(6): 065205

doi: 10.1088/0957-0233/20/6/065205
Zhang J, Zhang Y, Sun W, Yuan L. Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement schemeof temperature and strain. Measurement Science and Technology, 2009, 20(6): 065206

doi: 10.1088/0957-0233/20/6/065206
Hu M H, Shao H H. Autoregressive spectral analysis based on statistical autocorrelation. Physica A: Statistical Mechanics and Its Applications, 2007, 376: 139–146

doi: 10.1016/j.physa.2006.10.087
Wang Q G, Zhang Y. Robust identification of continuous systems with dead-time from step responses. Automatica, 2001, 37(3): 377–390

doi: 10.1016/S0005-1098(00)00177-1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed