Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2010, Vol. 5 Issue (4) : 464-469    https://doi.org/10.1007/s11460-010-0115-x
RESEARCH ARTICLE
Concatenated Alamouti codes using multi-level modulation and symbol mapping diversity technique
Mingwei CAO1(), Guangguo BI2
1. China Ship Research and Development Academy, Beijing 100192, China; 2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
 Download: PDF(167 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A family of space-time block codes (STBCs) for systems with even transmit antennas and any number of receive antennas is proposed. The new codeword matrix is constructed by concatenating Alamouti space-time codes to form a block diagonal matrix, and its dimension is equal to the number of transmit antennas. All Alamouti codes in the same codeword matrix have the same information; thus, full transmit diversity can be achieved over fading channels. To improve the spectral efficiency, multi-level modulations such as multi-quadrature amplitude modulation (M-QAM) are employed. The symbol mapping diversity is then exploited between transmissions of the same information from different antennas to improve the bit error rate (BER) performance. The proposed codes outperform the diagonal algebraic space-time (DAST) codes presented by Damen [Damen et al. IEEE Transactions on Information Theory, 2002, 48(3): 628–636] when they have the same spectral efficiency. Also, they outperform the 1/2-rate codes from complex orthogonal design. Moreover, compared to DAST codes, the proposed codes have a low decoding complexity because we only need to perform linear processing to achieve single-symbol maximum-likelihood (ML) decoding.

Keywords space-time block codes (STBCs)      symbol mapping      spectral efficiency      decoding complexity      pairwise error probability (PEP)     
Corresponding Author(s): CAO Mingwei,Email:mwcao@163.com   
Issue Date: 05 December 2010
 Cite this article:   
Mingwei CAO,Guangguo BI. Concatenated Alamouti codes using multi-level modulation and symbol mapping diversity technique[J]. Front Elect Electr Eng Chin, 2010, 5(4): 464-469.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-010-0115-x
https://academic.hep.com.cn/fee/EN/Y2010/V5/I4/464
Fig.1  BER performance of DAST codes and concatenated Alamouti codes in quasi-static Rayleigh flat fading channel (four transmit antennas and one receive antenna)
Fig.2  BER performance of DAST codes, OSTBC, and concatenated Alamouti codes in quasi-static Rayleigh flat fading channel (six transmit antennas and one receive antenna)
1 Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications , 1998, 6(3): 311-335
doi: 10.1023/A:1008889222784
2 Telatar E. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications , 1999, 10(6): 585-595
doi: 10.1002/ett.4460100604
3 Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications , 1998, 16(8): 1451-1458
doi: 10.1109/49.730453
4 Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory , 1999, 45(5): 1456-1467
doi: 10.1109/18.771146
5 Wang H, Xia X G. Upper bounds of rates of complex orthogonal space-time block codes. IEEE Transactions on Information Theory , 2003, 49(10): 2788-2796
doi: 10.1109/TIT.2003.817830
6 Jafarkhani H. A quasi-orthogonal space-time block code. IEEE Transactions on Communications , 2001, 49(1): 1-4
doi: 10.1109/26.898239
7 Zhang J K, Liu J, Wong K M. Linear Toeplitz space time block codes. In: Proceedings of International Symposium on Information Theory . 2005, 1942-1946
8 Shang Y, Xia X G. Space-time block codes achieving full diversity with linear receivers. IEEE Transactions on Information Theory , 2008, 54(10): 4528-4547
doi: 10.1109/TIT.2008.928986
9 DaSilva V M, Sousa E S. Fading-resistant modulation using several transmitter antennas. IEEE Transactions on Communications , 1997, 45(10): 1236-1244
doi: 10.1109/26.634687
10 Damen M O, Abed-Meraim K, Belfiore J C. Diagonal algebraic space-time block codes. IEEE Transactions on Information Theory , 2002, 48(3): 628-636
doi: 10.1109/18.985979
11 Boutros J, Viterbo E. Signal space diversity: a power and bandwidth-efficient diversity technique for the Rayleigh fading channel. IEEE Transactions on Information Theory , 1998, 44(4): 1453-1467
doi: 10.1109/18.681321
12 Wengerter C, von Elbwart A G E, Seidel E, Velev G, Schmitt M P. Advanced hybrid ARQ technique employing a signal constellation rearrangement. In: Proceedings of the 56th IEEE Vehicular Technology Conference . 2002, 4: 2002-2006
13 Samra H, Ding Z, Hahn P M. Symbol mapping diversity design for multiple packet transmissions. IEEE Transactions on Communications , 2005, 53(5): 810-817
doi: 10.1109/TCOMM.2005.847132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed