Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (1) : 171-180    https://doi.org/10.1007/s11460-011-0125-3
RESEARCH ARTICLE
Nature of complex number and complex-valued neural networks
Akira HIROSE1,2()
1. A part of this invited paper was presented at the International Joint Conference on Neural Networks (IJCNN), 2009, Atlanta.; 2. Department of Electrical Engineering and Information Systems, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
 Download: PDF(544 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We discuss the nature of complex number and its effect on complex-valued neural networks (CVNNs). After we review some examples of CVNN applications, we look back at the mathematical history to elucidate the features of complex number, in particular to confirm the importance of the phaseand-amplitude viewpoint for designing and constructing CVNNs to enhance the features. This viewpoint is essential in general to deal with waves such as electromagnetic wave and lightwave. Then, we point out that, although we represent a complex number as an ordered pair of real numbers for example, we can reduce ineffective degree of freedom in learning or self-organization in CVNNs to achieve better generalization characteristics. This merit is significantly useful not only for waverelated signal processing but also for general processing with frequency-domain treatment through Fourier transform.

Keywords electromagnetic wave      lightwave      coherence      adaptive processing in sensing and imaging      learning logic      neural hardware     
Corresponding Author(s): HIROSE Akira,Email:ahirose@eis.t.u-tokyo.ac.jp   
Issue Date: 05 March 2011
 Cite this article:   
Akira HIROSE. Nature of complex number and complex-valued neural networks[J]. Front Elect Electr Eng Chin, 2011, 6(1): 171-180.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0125-3
https://academic.hep.com.cn/fee/EN/Y2011/V6/I1/171
1 Hirose A. Complex-Valued Neural Networks. Heidelberg: Springer-Verlag, 2006
doi: 10.1007/978-3-540-33457-6
2 Hirose A. Complex-Valued Neural Networks: Theories and Applications. Singapore: World Scientific Publishing, 2003
doi: 10.1142/9789812791184
3 Hirose A. Complex-valued neural networks. IEEE Computational Intelligence Society (CIS) Video Archives, Tutorial, IJCNN 2009 Atlanta
4 Hirose A. Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme. Information Sciences-Applications , 1994, 2(2): 103-117
doi: 10.1016/1069-0115(94)90014-0
5 Hirose A. Dynamics of fully complex-valued neural networks. Electronics Letters , 1992, 28(16): 1492-1494
doi: 10.1049/el:19920948
6 Hirose A. Continuous complex-valued back-propagation learning. Electronics Letters , 1992, 28(20): 1854-1855
doi: 10.1049/el:19921186
7 Birx D L, Pipenberg S J. A complex mapping network for phase sensitive classification. IEEE Transactions on Neural Networks , 1993, 4(1): 127-135
doi: 10.1109/72.182703
8 Zhang Y, Ma Y. CGHA for principal component extraction in the complex domain. IEEE Transactions on Neural Networks , 1997, 8(5): 1031-1036
doi: 10.1109/72.623205
9 Sawada H, Mukai R, Araki S, Makino S. Polar coordinate based nonlinear function for frequency-domain blind source separation. IEICE Transactions on Fundamentals of Electronics, Communications, and Computer Sciences , 2003, E86A(3): 590-596
10 Hara T, Hirose A. Plastic mine detecting radar system using complex-valued selforganizing map that deals with multiple-frequency interferometric images. Neural Networks , 2004, 17(8-9): 1201-1210
doi: 10.1016/j.neunet.2004.07.012
11 Hara T, Hirose A. Adaptive plastic-landmine visualizing radar system: effects of aperture synthesis and featurevector dimension reduction. IEICE Transactions on Electronics , 2005, E88-C(12): 2282-2288
12 Yang C C, Bose N. Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset. IEEE Transactions on Neural Networks , 2005, 16(3): 743-753
doi: 10.1109/TNN.2005.844906
13 Masuyama S, Hirose A. Walled LTSA array for rapid, high spatial resolution, and phase sensitive imaging to visualize plastic landmines. IEEE Transactions on Geoscience and Remote Sensing , 2007, 45(8): 2536-2543
doi: 10.1109/TGRS.2007.897418
14 Masuyama S, Yasuda K, Hirose A. Multiple mode selection of walled-LTSA array elements for high resolution imaging to visualize antipersonnel plastic landmines. IEEE Geoscience and Remote Sensing Letters , 2008, 5(4): 745-749
doi: 10.1109/LGRS.2008.2004509
15 Nakano Y, Hirose A. Improvement of plastic landmine visualization performance by use of ing-CSOM and frequencydomain local correlation. IEICE Transactions on Electronics , 2009, E92-C(1): 102-108
16 Yamaki R, Hirose A. Singular unit restoration in interferograms based on complex-valued Markov random field model for phase unwrapping. IEEE Geoscience and Remote Sensing Letters , 2009, 6(1): 18-22
doi: 10.1109/LGRS.2008.2005588
17 Suksmono A B, Hirose A. Adaptive complex-amplitude texture classifier that deals with both height and reflectance for interferometric SAR images. IEICE Transaction on Electronics , 2000, E83-C(12): 1905-1911
18 Aizenberg I, Paliy D V, Zurada J M, Astola J T. Blur identification by multilayer neural network based on multivalued neurons. IEEE Transactions on Neural Networks , 2008, 19(5): 883-898
doi: 10.1109/TNN.2007.914158
19 Goh S, Mandic D P. Nonlinear adaptive prediction of complex valued non-stationary signals. IEEE Transactions on Signal Processing , 2005, 53(5): 1827-1836
doi: 10.1109/TSP.2005.845462
20 Goh S L, Mandic D P. An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks. Neural Computation , 2007, 19(4): 1-17
doi: 10.1162/neco.2007.19.4.1039
21 Hirose A, Eckmiller R. Behavior control of coherent-type neural networks by carrier-frequency modulation. IEEE Transactions on Neural Networks , 1996, 7(4): 1032-1034
doi: 10.1109/72.508945
22 Suksmono A B, Hirose A. Beamforming of ultra-wideband pulses by a complex-valued spatio-temporal multilayer neural network. International Journal of Neural Systems , 2005, 15(1): 1-7
doi: 10.1142/S0129065705000128
23 Hirose A, Eckmiller R. Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain. Applied Optics , 1996, 35(5): 836-843
doi: 10.1364/AO.35.000836
24 Kawata S, Hirose A. Frequency-multiplexed logic circuit based on a coherent optical neural network. Applied Optics , 2005, 44(19): 4053-4059
doi: 10.1364/AO.44.004053
25 Kawata S, Hirose A. Frequency-multiplexing ability of complex-valued Hebbian learning in logic gates. International Journal of Neural Systems , 2008, 12(1): 43-51
26 Hirose A, Higo T, Tanizawa K. Efficient generation of holographic movies with frame interpolation using a coherent neural network. IEICE Electronics Express , 2006, 3(19): 417-423
doi: 10.1587/elex.3.417
27 Tay C S, Tanizawa K, Hirose A. Error reduction in holographic movies using a hybrid learning method in coherent neural networks. Applied Optics , 2008, 47(28): 5221-5228
doi: 10.1364/AO.47.005221
28 Hirose A, Asano Y, Hamano T. Developmental learning with behavioral mode tuning by carrier-frequency modulation in coherent neural networks. IEEE Transactions on Neural Networks , 2006, 17(6): 1532-1543
doi: 10.1109/TNN.2006.880361
29 Lee D L. Improvements of complex-valued hopfield associative memory by using generalized projection rules. IEEE Transactions on Neural Networks , 2006, 17(5): 1341-1347
doi: 10.1109/TNN.2006.878786
30 Novey M, Adali T. Complex ICA by negentropy maximization. IEEE Transactions on Neural Networks , 2008, 19(4): 596-609
doi: 10.1109/TNN.2007.911747
31 Li H, Adali T., A class of complex ICA algorithms based on the kurtosis cost function. IEEE Transactions on Neural Networks , 2008, 19(3): 408-420
doi: 10.1109/TNN.2007.908636
32 Widrow B, McCool J, Ball M. The complex LMS algorithm. Proceedings of the IEEE , 1975, 63(4): 719-720
doi: 10.1109/PROC.1975.9807
33 Georgiou G M, Koutsougeras C. Complex domain backpropagation. IEEE Transactions on Circuits and Systems II , 1992, 39(5): 330-334
doi: 10.1109/82.142037
34 Takeda M, Kishigami T. Complex neural fields with a hopfield-like energy function and an analogy to optical fields generated in phase-conjugate resonators. Journal of Optical Society of America A , 1992, 9(12): 2182-2191
doi: 10.1364/JOSAA.9.002182
35 Ebbinghaus H D, Hermes H, Hirzebruch F, Koecher M, Mainzer K, Neukirch J, Prestel A, Remmert R. Numbers (Chapter 3, Section 2). Berlin: Springer-Verlag, 1983
36 Copson E. An Introduction to the Theory of Functions of a Complex Variable. Oxford: Clarendon Press, 1935
37 Kuroe Y, Taniguchi Y. Models of orthogonal type complexvalued dynamic associative memories and their performance comparison. In: Proceedings of International Conference on Artificial Neural Networks . 2007, 838-847
38 Leung H, Haykin S. The complex backpropagation al gorithm. IEEE Transactions on Signal Processing , 1991, 39(9): 2101-2104
doi: 10.1109/78.134446
39 Benvenuto N, Piazza F. On the complex backpropagation algorithm. IEEE Transactions on Signal Processing , 1992, 40(4): 967-969
doi: 10.1109/78.127967
[1] LI Junyuan, CHEN Hongjun, ZHANG Xiaohua, LI Shengfeng. Localization technique research of a pipeline robot based on the magnetic-dipole model[J]. Front. Electr. Electron. Eng., 2008, 3(1): 55-60.
[2] MAO Haiyang, XIONG Jijun, ZHANG Wendong, XUE Chenyang, SANG Shengbo, BAO Aida. Piezoresistive properties of resonant tunneling diodes[J]. Front. Electr. Electron. Eng., 2007, 2(4): 449-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed