Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    0, Vol. Issue () : 279-285    https://doi.org/10.1007/s11460-012-0195-x
RESEARCH ARTICLE
Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor
Minghua LIU, Lijun ZHANG()
School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An attenuated iterative reliability-based majority-logic (AIML) decoding algorithm for low-density parity-check (LDPC) codes is proposed, which pertains to hybrid decoding schemes. The algorithm is devised based on the orthogonal check-sums of one-step majority-logic (OSMLG) decoding algorithm in conjunction with certain of reliability measures of the received symbols. Computation of reliability measure of the syndrome sum is refined by introducing an attenuation factor. Simulation results show that, in binary-input additive white Gaussian noise (BI-AWGN) channel, the AIML decoding algorithm outperforms other popular iterative reliability-based majority-logic (IML) decoding algorithms with a slight increase in computational complexity. Within maximum iteration number of 5, the AIML algorithm can achieve almost identical error performance to sum-product algorithm (SPA). No error floor effect can be observed for the AIML algorithm down to the bit error rate (BER) of 10-8, while error floor appears for SPA around the BER of 10-7 even with maximum iteration number of 100. Furthermore, the inherent feature of parallel procession for AIML algorithm enforces the decoding speed in contrast to those serial decoding schemes, such as weighted bit-flipping (WBF) algorithm.

Keywords attenuation factor      reliability-based      iterative      majority-logic      low-density parity-check (LDPC) codes     
Corresponding Author(s): ZHANG Lijun,Email:ljzhang@bjtu.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Minghua LIU,Lijun ZHANG. Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor[J]. Front Elect Electr Eng, 0, (): 279-285.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0195-x
https://academic.hep.com.cn/fee/EN/Y0/V/I/279
decoding algorithmsBOIORARCRMLog
AIML2μ-mnNμ-n
WIML2μ-mμ+n
IML2μ+n-mμ
IMWBFμ+mμ2μn
SPAμ+m2μ6μn
Tab.1  Computational complexity per iteration of various decoding algorithms
decoding algorithmsunits/bitsRN*
AIMLn+2m
WIML2n+2m
IMLn+nb
IMWBFmn+2m
SPAμ
Tab.2  Memory requirement of various decoding algorithms
Fig.1  Performance comparison of (255, 175) EG-LDPC code decoded with various decoding schemes
Fig.2  Performance comparison of (4095, 3367) EG-LDPC code decoded with various decoding schemes (= 0.2)
Fig.3  Performance comparison of (255, 175) EG-LDPC code decoded with SPA and AIML algorithm
Fig.4  Convergence behavior of AIML algorithm for (255, 175) EG-LDPC code
Fig.5  Performance comparison for MacKay’s (408, 204) LDPC code with AIML and SPA
1 Gallager R G. Low-density parity-check codes. IRE Transactions on Information Theory , 1962, 8(1): 21-28
doi: 10.1109/TIT.1962.1057683
2 MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters , 1996, 32(18): 1645-1646
doi: 10.1049/el:19961141
3 MacKay D J C. Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory , 1999, 45(2): 399-431
doi: 10.1109/18.748992
4 Tanner R M. A recursive approach to low complexity codes. IEEE Transactions on Information Theory , 1981, 27(5): 533-547
doi: 10.1109/TIT.1981.1056404
5 Zhang J, Fossorier M P C. A modified weighted bit-flipping decoding of low density parity-check codes. IEEE Communications Letters , 2004, 8(3): 165-167
doi: 10.1109/LCOMM.2004.825737
6 Mobini N, Banihashemi A H, Hemati S. A differential binary message-passing LDPC decoder. In: Proceedings of IEEE Global Telecommunications Conference . 2007, 3: 1561-1565
7 Chen C Y, Huang Q, Kang J Y, Zhang L, Lin S. A binary message-passing decoding algorithm for LDPC codes. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing . 2009, 424-430
8 Huang Q, Kang J Y, Zhang L, Lin S, Abdel-Ghaffar K. Two reliability-based iterative majority-logic decoding algorithms for LDPC codes. IEEE Transactions on Communications , 2009, 57(12): 3597-3606
doi: 10.1109/TCOMM.2009.12.080493
9 Jiang M, Zhao C M, Shi Z H, . An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes. IEEE Communications Letters , 2005, 9(9): 814-816
doi: 10.1109/LCOMM.2005.1506712
10 Guo F, Hanzo L. Reliability ratio based weighted bit-flipping decoding for LDPC codes. In: Proceedings of the 61st IEEE Vehicular Technology Conference . 2005, 1: 709-713
11 Dong G Q, Li Y N, Xie N D, Zhang T, Liu H P. Candidate bit based bit-flipping decoding algorithm for LDPC codes. In: Proceedings of IEEE International Symposium on Information Theory . 2009, 2166-2168
12 Lee C H, Wolf W. Implementation-efficient reliability ratio based weighted bit-flipping decoding for LDPC codes. Electronics Letters , 2005, 41(13): 755-757
doi: 10.1049/el:20051060
13 Chen J H, Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Transactions on Communications , 2002, 50(3): 406-414
doi: 10.1109/26.990903
14 Wu X F, Ling C, Jiang M, Xu E Y, Zhao C M, You X H. New insights in weighted bit-flipping decoding. IEEE Transactions on Communications , 2009, 57(8): 2177-2180
doi: 10.1109/TCOMM.2009.08.070257
15 Wu X F, Ling C, Jiang M, . Towards understanding weighted bit-flipping decoding. In: Proceedings of IEEE International Symposium on Information Theory . 2007, 1666-1670
16 Lin S, Costello D J. Error Control Coding: Fundamentals and Applications. 2nd ed. Upper Saddle River , NJ: Prentice Hall, 2004
17 Kou Y, Lin S, Fossorier M P C. Low density parity check codes based on finite geometries: A rediscovery and new results. IEEE Transactions on Information Theory , 2001, 47(7): 2711-2736
18 Proakis J G. Digital Communications. 5th ed. USA: McGraw-Hill Higher Education, 2008
19 Reed I S. A class of multiple-error-correcting codes and decoding scheme. IRE Transactions on Information Theory , 1954, 4(4): 38-49
doi: 10.1109/TIT.1954.1057465
20 Massey J L. Threshold Decoding. Cambridge , MA: MIT Press, 1963
21 MacKay D J C. Encyclopedia of Sparse Graph Codes. Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
22 Liu M H. Hybrid decoding for LDPC codes. Dissertation for the Master Degree . Beijing: Beijing Jiaotong University, 2010, 43-46 (in Chinese)
[1] Zhongliang DENG, Yuetao GE, Weiguo GUAN, Ke HAN. Underwater map-matching aided inertial navigation system based on multi-geophysical information[J]. Front Elect Electr Eng Chin, 2010, 5(4): 496-500.
[2] Mingwei CAO, Guangguo BI, . Efficient detection for cooperative communication with two alternating relays[J]. Front. Electr. Electron. Eng., 2010, 5(1): 29-35.
[3] WANG Binrui, XIE Hualong, CONG Dehong, XU Xinhe. Biped robot control strategy and open-closed-loop iterative learning control[J]. Front. Electr. Electron. Eng., 2007, 2(1): 104-107.
[4] BI Jian-guang, DONG Xin-zhou, GUO Yong-ji. New Algorithm for Fault Superimposed Quantities Based on Superimposed Network[J]. Front. Electr. Electron. Eng., 2006, 1(1): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed