Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (1) : 17-26    https://doi.org/10.1007/s11460-011-0130-6
RESEARCH ARTICLE
Graph-based semi-supervised learning
Changshui ZHANG(), Fei WANG
State Key Laboratory of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Automation,Tsinghua University, Beijing 100084, China
 Download: PDF(391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The recent years have witnessed a surge of interests in graph-based semi-supervised learning (GBSSL). In this paper, we will introduce a series of works done by our group on this topic including: 1) a method called linear neighborhood propagation (LNP) which can automatically construct the optimal graph; 2) a novel multilevel scheme to make our algorithm scalable for large data sets; 3) a generalized point charge scheme for GBSSL; 4) a multilabel GBSSL method by solving a Sylvester equation; 5) an information fusion framework for GBSSL; and 6) an application of GBSSL on fMRI image segmentation.

Keywords graph-based semi-supervised learning (GBSSL)      linear neighborhood propagation (LNP)      point charge model      fMRI image segmentation     
Corresponding Author(s): ZHANG Changshui,Email:zcs@mail.tsinghua.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Changshui ZHANG,Fei WANG. Graph-based semi-supervised learning[J]. Front Elect Electr Eng Chin, 2011, 6(1): 17-26.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0130-6
https://academic.hep.com.cn/fee/EN/Y2011/V6/I1/17
1 Chapelle O, Sch?lkopf B, Zien A. Semi-Supervised Learning. Cambridge: MIT Press, 2006
2 Zhu X. Semi-supervised learning literature survey. Technical Report 1530, Univ. Wisconsin-Madison. 2005
3 Graf E K, Evans J L, Alibali M W, Saffran J R. Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science , 2007, 18(3): 254-260
doi: 10.1111/j.1467-9280.2007.01885.x
4 Stromsten S B. Classification learning from both classified and unclassified examples. Dissertation for the Doctoral Degree . Palo Alto: Stanford University, 2002
5 Zhu X, Rogers T, Qian R, Kalish C. Humans perform semisupervised classification too. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence . 2007, 864-869
6 Zhou D, Bousquet O, Lal T N, Weston J, Sch?lkopf B. Learning with local and global consistency. In: Thrun S, Saul L, Sch?lkopf B, eds. Advances in Neural Information Processing Systems . 2004, 16: 321-328
7 Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation , 2003, 15(6): 1373-1396
doi: 10.1162/089976603321780317
8 Roweis S T, Saul L K. Noninear dimensionality reduction by locally linear embedding. Science , 2000, 290(5500): 2323-2326
doi: 10.1126/science.290.5500.2323
9 Seung H S, Lee D D. The manifold ways of perception. Science , 2000, 290(5500): 2268-2269
doi: 10.1126/science.290.5500.2268
10 Belkin M, Matveeva I, Niyogi P. Regularization and semisupervised learning on large graphs. In: Proceedings of the 17th Conference on Learning Theory . 2004, 624-638
11 Wang F, Zhang C. Label propagation through linear neighborhoods. In: Proceedings of the 23rd International Conference on Machine Learning . 2006, 985-992
doi: 10.1145/1143844.1143968
12 Wang F, Zhang C. Label propagation through linear neigh borhoods. IEEE Transactions on Knowledge and Data Engineering , 2008, 20(1): 55-67
doi: 10.1109/TKDE.2007.190672
13 Wang F, Zhang C. Semi-supervised learning based on generalized point charge models. IEEE Transactions on Neural Networks , 2008, 19(7): 1309-1311
14 Chen G, Song Y,Wang F, Zhang C. Semi-supervised multilabel learning by solving a sylvester equation. In: Proceedings of the 8th SIAM Conference on Data Mining . 2008, 410-419
15 Song Y, Zhang C. Content based information fusion for semi-supervised music genre classification. IEEE Transaction on Multimedia , 2008, 10(1): 145-152
doi: 10.1109/TMM.2007.911305
16 Song Y, Zhang C, Lee J, Wang F, Xiang S, Zhang D. Semisupervised discriminative classification with application to tumorous tissues segmentation of MR brain images. Pattern Analysis and Applications , 2009, 12(2): 99-115
doi: 10.1007/s10044-008-0104-3
17 Wang F, Zhang C. Fast multilevel transduction on graphs. In: Proceedings of the 7th SIAM International Conference on Data Mining . 2007, 157-168
18 Trottenberg U, Oosterlee C W, Schüler A. Multigrid. San Diego: Academic, 2001
19 Brandt A, Ron D. Multigrid solvers and multilevel optimization strategies. In: Cong J, Shinnerl J R, eds. Multilevel Optimization and VLSICAD , 2002, 1-69
20 Sharon E, Brandt A, Basri R. Fast multiscale image segmentation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition . 2000, 1: 70-77
21 Miah M A W. Fundamentals of Electromagnetics. New Delhi: Tata McGraw-Hill Publishing Co Ltd, 1982
22 Zhu X. Semi-supervised learning with graphs. Dissertation for the Doctoral Degree . Pittsburgh: Carnegie Mellon University, 2005
23 Chung F R K, Yau S T. Discrete green’s functions. Journal of Combinatorial Theory (A) , 2000, 91(1): 191-214
doi: 10.1006/jcta.2000.3094
24 Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research , 2006, 1(1): 1-48
25 Williams C, Barber D. Bayesian classification with gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1998, 20(12): 1342-1351
doi: 10.1109/34.735807
26 Williams C K I, Seeger M. Using the Nystr?m method to speed up kernel machines. In: Proceedings of Advances in Neural Information Processing Systems , Cambridge: MIT Press, 2001: 682-688
27 Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the Nystr?m method. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004, 26(2): 214-225
doi: 10.1109/TPAMI.2004.1262185
28 Press W, Teukolsky S, Vetterling W, Flannery B. Numerical Recipes in C. 2nd ed. Cambridge: Cambridge University Press, 1992
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed