Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2024, Vol. 11 Issue (3) : 377-395    https://doi.org/10.1007/s42524-024-0145-3
Industrial Engineering and Intelligent Manufacturing
Allocating redundancy, maintenance and spare parts for minimizing system cost under decentralized repairs
Tongdan JIN1, Shubin SI2, Wenjin ZHU2()
1. Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; Key Laboratory of Industrial Engineering and Intelligent Manufacturing (Ministry of Industry and Information Technology), Xi’an 710072, China
 Download: PDF(1343 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reliability-redundancy allocation, preventive maintenance, and spare parts logistics are crucial for achieving system reliability and availability goal. Existing methods often concentrate on specific scopes of the system’s lifetime. This paper proposes a joint redundancy-maintenance-inventory allocation model that simultaneously optimizes redundant component, replacement time, spares stocking, and repair capacity. Under reliability and availability criteria, our objective is to minimize the system’s lifetime cost, including design, manufacturing, and operational phases. We develop a unified system availability model based on ten performance drivers, serving as the foundation for the establishment of the lifetime-based resource allocation model. Superimposed renewal theory is employed to estimate spare part demand from proactive and corrective replacements. A bisection algorithm, enhanced by neighborhood exploration, solves the complex mixed-integer, nonlinear optimization problem. The numerical experiments show that component redundancy is preferred and necessary if one of the following situations occurs: extremely high system availability is required, the fleet size is small, the system reliability is immature, the inventory holding is too costly, or the hands-on replacement time is prolonged. The joint allocation model also reveals that there exists no monotonic relation between spares stocking level and system availability.

Keywords system availability      installed base      decentralized repair      redundancy-maintenance-inventory model      superimposed renewal process     
Corresponding Author(s): Wenjin ZHU   
Just Accepted Date: 28 April 2024   Online First Date: 27 June 2024    Issue Date: 26 September 2024
 Cite this article:   
Tongdan JIN,Shubin SI,Wenjin ZHU. Allocating redundancy, maintenance and spare parts for minimizing system cost under decentralized repairs[J]. Front. Eng, 2024, 11(3): 377-395.
 URL:  
https://academic.hep.com.cn/fem/EN/10.1007/s42524-024-0145-3
https://academic.hep.com.cn/fem/EN/Y2024/V11/I3/377
Fig.1  A system comprised of N redundant subsystems in series.
Fig.2  Product-service integration with decentralized repair services.
Notation Definition
xi Redundancy level for part type i, for i=1, 2,, N
si Base-stock level for part type i, for i=1, 2,, N
τi Replacement age or interval for part type i, for i=1, 2,, N
pi Number of renewing servers for part type i, for i=1, 2,, N
qi Number of repair servers for part type i, for i=1, 2,, N
Tab.1  Decision variables
Fig.3  The M/M/q/ queueing model for parts repair process.
Fig.4  A graphical illustration of the bisection search.
Notation Benchmark Sensitivity Analysis Unit
α 0.2 [0.2, 1.5] failure/year
β 3 [1.5, 5] n/a
k 10 10 item
nmax 13 13 item
m 50 [10, 200] system
ts 8 [4, 48] hour
1 μp 6 [3, 18] day
1 μq 12 [6, 24] day
cLRU 50,000 [25000, 200000] $/item
cu 3,000 n/a $/item
cv 4,500 n/a $/item
ch 10,000 [5000, 50000] $/item/year
cp 480,000 [0.5cp, 1.5cp] $/server
cq 640,000 [0.5cq, 1.5cq] $/server
Amin 0.99 [0.9, 0.999] n/a
θ 0.7 [0.5, 1.1] n/a
γmin, γ max 0.5, 2 0.5, 2 n/a
φ1, φ2 0.1295, 0.2310 0.1295, 0.2310 n/a
Tab.2  Parameter values of ATE system (n/a=not applicable, item=LRU)
Fig.5  System cost and availability for different fleet sizes.
Fig.6  Optimal solutions for different fleet sizes.
Fig.7  Spare part stock level and parts availability for benchmark study.
Case Parameter x s τ p q Asys Apart R (τ) Cost ($)
1 Amin=0.999 1 23 3.728 2 2 0.9992 0.89 0.661 137,348
0 No Solution
Amin=0.99 0 15 3.710 2 2 0.9901 0.962 0.661 126,407
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
Amin=0.9 0 9 3.773 2 2 0.9014 0.482 0.651 123,757
1 0 3.840 2 2 0.9131 0 0.636 127,316
2 θ =0.5 0 15 3.710 2 2 0.9901 0.962 0.661 126,407
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
θ =0.7 0 15 3.710 2 2 0.9901 0.962 0.661 126,407
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
θ =1.1 0 16 5.068 1 3 0.9902 0.963 0.353 129,623
1 0 5.068 1 4 0.9902 0.001 0.322 142,776
3 α =0.2 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
α =0.5 0 24 1.331 6 4 0.9902 0.991 0.745 211,168
1 24 1.500 5 5 0.9906 0.678 0.656 222,028
α =1.0 1 33 0.746 10 10 0.9920 0.787 0.661 366,491
0 No Solution
4 ts= 8 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
ts= 24 0 18 3.817 2 2 0.9903 0.991 0.641 127,592
1 19 3.728 2 2 0.9917 0.633 0.661 135,624
ts= 48 1 19 3.728 2 2 0.9907 0.633 0.661 135,624
0 No Solution
5 ch= 10,000 0 15 3.706 2 2 0.9901 0.962 0.666 126,412
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
ch= 20,000 0 15 3.728 2 2 0.9901 0.962 0.661 129,388
1 0 3.483 3 2 0.9904 0.001 0.713 137,365
ch= 50,000 1 0 3.483 3 2 0.9904 0.001 0.713 137,365
0 15 3.728 2 2 0.9901 0.962 0.661 138,388
Tab.3  Comparison between redundancy and spares inventory for Cases 1 to 5
Case Parameter x s τ p q Asys Apart R (τ) Cost ($)
6 β=1.5 0 11 6.771 1 4 0.9919 0.957 0.207 140,773
1 7 6.048 1 4 0.9901 0.226 0.264 146,835
β=33 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
β=4.5 0 10 3.262 3 1 0.9905 0.946 0.864 120,742
1 6 3.308 3 1 0.9901 0.180 0.856 126,407
7 1 μp=3 0 12 2.500 2 1 0.9910 0.964 0.882 115,023
1 9 2.433 2 1 0.9902 0.324 0.891 121,816
1 μp=6 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
1 μp=12 0 17 5.090 2 3 0.9908 0.968 0.348 139,453
1 9 5.961 1 4 0.9906 0.327 0.184 146,719
8 1 μq=6 0 7 5.202 1 2 0.9914 0.926 0.324 112,741
1 0 5.202 1 2 0.9941 0.003 0.324 117,176
1 μq=12 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
1 μq=24 0 32 2.679 3 2 0.9907 0.987 0.857 145,399
1 12 2.478 4 2 0.9903 0.434 0.885 154,906
9 cp= 240K 0 13 2.433 4 1 0.9902 0.963 0.891 115,728
1 11 2.456 4 1 0.9906 0.408 0.888 122,575
cp= 480K 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
cp= 720K 0 16 5.068 1 3 0.9902 0.963 0.353 134,223
1 21 4.934 1 3 0.9910 0.636 0.383 143,841
10 cq= 320K 0 16 5.068 1 3 0.9902 0.963 0.353 110,223
1 0 5.202 1 4 0.9919 0.001 0.324 117,176
cq= 640K 0 15 3.728 2 2 0.9901 0.962 0.661 126,388
1 19 3.751 2 2 0.9901 0.590 0.656 135,599
cq= 960K 0 32 2.679 3 1 0.9923 0.990 0.857 138,999
1 11 2.456 4 1 0.9906 0.408 0.888 148,175
Tab.4  Comparison between redundancy and spares inventory for Cases 6 to 10
m x s p q τ Asys Cost Cost Diff (%) Algorithm
10 0 2 1 1 4.063 0.9900 191,147.79 0.000 BS
0 2 2 2 5.210 0.9952 302,831.52 58.428 GA
0 2 2 2 5.209 0.9952 302,831.52 36.880 PSO
20 0 7 1 1 3.795 0.9903 138,598.13 0.000 BS
0 3 2 2 4.959 0.9900 189,764.39 36.917 GA
0 3 2 2 4.957 0.9900 189,764.54 36.917 PSO
30 0 9 2 1 3.170 0.9911 135,742.37 0.000 BS
0 5 2 2 4.386 0.9900 152,922.17 12.656 GA
0 5 2 2 4.374 0.9902 152,927.02 12.660 PSO
40 0 21 1 2 4.510 0.9909 129,934.56 0.000 BS
0 8 2 2 3.998 0.9900 135,191.86 4.046 GA
0 8 2 2 3.974 0.9906 135,209.85 4.060 PSO
50 0 15 2 2 3.706 0.9901 126,407.38 0.000 BS
0 16 2 2 3.829 0.9900 126,717.73 0.246 GA
0 16 2 2 3.774 0.9926 126,770.23 0.287 PSO
60 0 15 3 2 3.349 0.9914 126,344.98 0.031 BS
0 13 2 3 4.270 0.9900 127,384.86 0.854 GA
0 15 3 2 3.372 0.9905 126,306.04 0.000 PSO
70 0 30 2 3 4.161 0.9903 125,154.35 0.000 BS
0 13 3 3 3.865 0.9900 126,991.05 1.468 GA
0 32 2 3 4.141 0.9948 125,780.55 0.500 PSO
80 0 22 3 3 3.706 0.9901 123,073.06 0.000 BS
0 22 2 4 4.523 0.9900 124,541.17 1.193 GA
0 23 3 3 3.775 0.9901 123,269.10 0.159 PSO
90 0 21 4 3 3.488 0.9906 123,109.26 0.001 BS
0 21 4 3 3.488 0.9900 123,107.83 0.000 GA
0 21 4 3 3.477 0.9909 123,123.63 0.013 PSO
100 0 38 3 4 4.018 0.9914 123,057.65 0.000 BS
0 17 3 5 4.376 0.9900 124,731.38 1.360 GA
0 39 3 4 3.980 0.9907 123,299.45 0.196 PSO
110 0 29 4 4 4.465 0.9903 121,513.23 0.001 BS
0 29 4 4 3.745 0.9900 121,512.23 0.000 GA
0 29 4 4 3.713 0.9917 121,545.98 0.028 PSO
120 0 26 5 4 3.527 0.9901 121,363.67 0.000 BS
0 24 4 5 4.025 0.9900 121,838.51 0.391 GA
0 26 5 4 3.492 0.9917 121,408.94 0.037 PSO
130 0 25 6 4 3.349 0.9903 121,614.60 0.002 BS
0 25 6 4 3.349 0.9900 121,611.91 0.000 GA
0 22 5 5 3.760 0.9907 121,811.97 0.165 PSO
140 0 35 5 5 3.743 0.9901 120,495.55 0.000 BS
0 35 5 5 3.740 0.9900 120,496.74 0.001 GA
0 37 5 5 3.744 0.9937 120,800.53 0.253 PSO
150 0 31 6 5 3.559 0.9903 120,307.38 0.001 BS
0 31 6 5 3.558 0.9900 120,305.60 0.000 GA
0 28 5 6 3.930 0.9902 120,556.70 0.209 PSO
160 0 29 7 5 3.393 0.9904 120,459.42 0.000 BS
0 25 5 7 4.104 0.9900 121,176.29 0.595 GA
0 26 6 6 3.716 0.9907 120,636.36 0.147 PSO
170 0 40 6 6 3.706 0.9915 119,746.86 0.000 BS
0 29 8 5 3.288 0.9900 120,812.72 0.890 GA
0 42 6 6 3.669 0.9915 120,039.51 0.244 PSO
180 0 36 7 6 3.572 0.9918 119,613.35 0.000 BS
0 44 8 5 3.258 0.9900 120,155.51 0.453 GA
0 39 7 6 3.502 0.9943 120,061.78 0.375 PSO
190 0 33 8 6 3.438 0.9900 119,650.11 0.000 BS
0 30 7 7 3.732 0.9900 119,782.91 0.111 GA
0 34 8 6 3.444 0.9916 119,752.30 0.085 PSO
200 0 42 6 8 4.024 0.9903 119,390.37 0.000 BS
0 42 6 8 4.019 0.9900 119,391.56 0.001 GA
0 29 8 7 3.600 0.9901 119,991.31 0.503 PSO
Tab.5  Comparisons of BS, GA and PSO results (underscores are the lowest)
Subsystem i=1 i=2 i=3 i=4 Unit
α 0.25 0.3 0.35 0.4 failure/year
β 1.5 2.5 3 3.5 n/a
k 10 7 5 3 item
nmax 13 10 7 5 item
ts 12 18 24 30 hour
1 μp 6 9 12 15 day
1 μq 12 14 18 21 day
cLRU 60,000 90,000 110,000 130,000 $/item
cu 3,000 5,000 6,000 7,500 $/item
cv 4,500 7,500 9,500 11,250 $/item
ch 12,000 18,000 22,000 26,000 $/item/year
cp 250,000 320,000 375,000 420,000 $/server
cq 350,000 384,000 494,000 630,000 $/server
γmin, γ max 0.5, 2 0.5, 2 0.5, 2 0.5, 2 n/a
Tab.6  Reliability and cost data for series-parallel system (n/a=not applicable)
m 10 20 30 40 50 60 70 80 90 100
Cost 776,664 701,735 666,538 645,222 634,393 627,222 627,411 619,270 612,960 610,007
Asys 0.99001 0.99001 0.99001 0.99000 0.99001 0.99000 0.99000 0.99000 0.99001 0.99000
x1 1 1 0 0 0 0 0 0 0 0
x2 1 1 1 1 1 1 1 1 1 1
x3 1 1 1 1 1 1 1 1 1 1
x4 0 0 0 0 0 0 0 0 0 0
s1 5 7 15 17 17 19 25 29 32 34
s2 3 6 10 13 16 19 14 16 18 20
s3 4 8 8 12 16 20 23 20 23 25
s4 4 8 16 15 15 18 19 25 26 26
τ1 3.033 4.044 5.416 5.416 5.416 5.416 5.416 5.416 5.416 5.416
τ2 2.810 3.372 3.667 3.845 4.022 4.141 3.224 3.342 3.460 3.519
τ3 2.398 2.781 2.679 2.322 2.526 2.653 2.730 2.424 2.526 2.602
τ4 2.272 2.564 2.497 2.699 2.834 2.497 3.104 2.969 2.654 2.744
p1 1 1 1 1 1 1 1 1 2 2
p2 1 1 1 1 1 1 3 3 3 3
p3 1 1 2 3 3 3 3 5 5 5
p4 1 1 1 1 1 2 1 1 2 2
q1 1 2 3 4 5 6 7 8 8 9
q2 1 2 3 4 5 6 6 7 8 9
q3 1 2 3 3 4 5 6 6 7 8
q4 1 2 2 3 4 4 6 6 6 7
Tab.7  The solution for systems with four redundant subsystems
Notation Definition
α ,β Weibull scale and shape parameters, respectively
λp Part demand rate of a single-item system in planned replacement
λq Part demand rate of a single-item system in failure replacement
λm Aggregate part demand rate of a fleet of single-item systems
λF,p Aggregate part demand rate of a fleet in planned replacement
λF,q Aggregate part demand rate of a fleet in failure replacement
λF Aggregate part demand rate of a fleet, and λF=λF ,p+ λF,q
ρp,ρq Part renewing and repair traffic intensity rate, respectively
φ1 Capital recovery factor of system
φ2 Capital recovery factor of spare part or LRU
θ Percentage of mean time between failures of LRU
μ Number of returned items during parts turn-around time
μp, μ q Part renewing rate and repair rate, respectively
τmin, τmax The lower and upper limit of maintenance intervals
γmin, γmax Minimum and maximum percentage of MTBF for LRU
cLRU Unit cost for a spare part or LRU
ch Unit holding cost per year
cu, cv Cost for renewing and repairing a part, respectively
cp, cq Cost for operating a renewing and repairing server, respectively
k The minimum number of required working item in a system
m System fleet size or installed base
nmax Maximum number of components a system can install
tATT Average part turn-around time
tp Part renewing turn-around time
tq Part repair turn-around time
ts Hands-on time for replacing a part
B (q) Probability for a part waiting in a repair shop
C (p) Probability for a part waiting in a renewing shop
A Availability of a single-item system
AR Availability of a k-out-of-n redundant system
Amin Target or desired system availability
Asys Actual system availability
Apart Actual parts availability
f (t) Probability density functions of the LRU lifetime
R (t) Reliability function of the LRU
F (t) Cumulative distribution function of the LRU lifetime
O Steady-state inventory on-order, a random variable
Tp Mean downtime in a planned replacement
Tq Mean downtime in a failure replacement
T ¯ Mean-time-between-failures of the LRU
N Number of redundant subsystems in a system
  Table A1 Model parameters
Fig.8  Weibull reliability for τ= 0.5, 1 and 2MTBF
1 S, Alaswad Y, Xiang (2017). A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering & System Safety, 157: 54–63
https://doi.org/10.1016/j.ress.2016.08.009
2 E, Barnett C, Gosselin (2021). A bisection algorithm for time-optimal trajectory planning along fully specified paths. IEEE Transactions on Robotics, 37( 1): 131–145
https://doi.org/10.1109/TRO.2020.3010632
3 R J I, Basten K J, Ryan (2019). The value of maintenance delay flexibility for improved spare parts inventory management. European Journal of Operational Research, 278( 2): 646–657
https://doi.org/10.1016/j.ejor.2019.04.023
4 R J I, Basten G J, van Houtum (2014). System-oriented inventory models for spare parts. Surveys in Operations Research and Management Science, 19( 1): 34–55
https://doi.org/10.1016/j.sorms.2014.05.002
5 X, Bei N, Chatwattanasiri D W, Coit X, Zhu (2017). Combined redundancy allocation and maintenance planning using a two-stage stochastic programming model for multiple component systems. IEEE Transactions on Reliability, 66( 3): 950–962
https://doi.org/10.1109/TR.2017.2715172
6 X, Bei X, Zhu D W, Coit (2019). A risk-averse stochastic program for integrated system design and preventive maintenance planning. European Journal of Operational Research, 276( 2): 536–548
https://doi.org/10.1016/j.ejor.2019.01.038
7 E T S, Bjarnason S, Taghipour (2016). Periodic inspection frequency and inventory policies for a k-out-of-n system. IIE Transactions, 48( 7): 638–650
https://doi.org/10.1080/0740817X.2015.1122253
8 E T S, Bjarnason S, Taghipour D, Banjevic (2014). Joint optimal inspection and inventory for a k-out-of-n system. Reliability Engineering & System Safety, 131: 203–215
https://doi.org/10.1016/j.ress.2014.06.018
9 L, Chen Z S, Ye M, Xie (2013). Joint maintenance and spare component provisioning policy for k-out-of-n systems. Asia-Pacific Journal of Operational Research, 30( 6): 1350023
https://doi.org/10.1142/S0217595913500231
10 D W, Coit E, Zio (2019). The evolution of system reliability optimization. Reliability Engineering & System Safety, 192: 106259
https://doi.org/10.1016/j.ress.2018.09.008
11 D R, Cox W L, Smith (1954). On the superposition of renewal processes. Biometrika, 41( 1–2): 91–99
https://doi.org/10.1093/biomet/41.1-2.91
12 K S, de Smidt-Destombes M C, van der Heijden A, van Harten (2009). Joint optimisation of spare part inventory, maintenance frequency and repair capacity for k-out-of-n systems. International Journal of Production Economics, 118( 1): 260–268
https://doi.org/10.1016/j.ijpe.2008.08.058
13 R, Dekker Ç, Pinçe R, Zuidwijk M N, Jalil (2013). On the use of installed base information for spare parts logistics: A review of ideas and industry practice. International Journal of Production Economics, 143( 2): 536–545
https://doi.org/10.1016/j.ijpe.2011.11.025
14 A, Díaz M, Fu (1997). Models for multi-echelon repairable item inventory systems with limited repair capacity. European Journal of Operational Research, 97( 3): 480–492
https://doi.org/10.1016/S0377-2217(96)00279-2
15 S, El-Ferik (2008). Economic production lot-sizing for an unreliable machine under imperfect age-based maintenance policy. European Journal of Operational Research, 186( 1): 150–163
https://doi.org/10.1016/j.ejor.2007.01.035
16 M, Hekimoğlu der Laan E, van R, Dekker (2018). Markov-modulated analysis of a spare parts system with random lead times and disruption risks. European Journal of Operational Research, 269( 3): 909–922
https://doi.org/10.1016/j.ejor.2018.02.040
17 Y, Hu X, Miao Y, Si E, Pan E, Zio (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217: 108063
https://doi.org/10.1016/j.ress.2021.108063
18 K T, Huynh I T, Castro A, Barros C, Bérenguer (2012). Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks. European Journal of Operational Research, 218( 1): 140–151
https://doi.org/10.1016/j.ejor.2011.10.025
19 T, Jin (2023). Bridging reliability and operations management for superior system availability: Challenges and opportunities. Frontiers of Engineering Management, 10( 3): 391–405
https://doi.org/10.1007/s42524-022-0206-4
20 T JinH Li F Sun (2021). System availability considering redundancy, maintenance and spare parts with dual repair processes. In: Proceedings of Industrial and Systems Engineer Conference, Montreal, Canada, 1–6
21 T, Jin H, Taboada J, Espiritu H, Liao (2017). Allocation of reliability-redundancy and spares inventory under Poisson fleet expansion. IISE Transactions, 49( 7): 737–751
https://doi.org/10.1080/24725854.2016.1271963
22 T, Jin Y, Tian (2012). Optimizing reliability and service parts logistics for a time-varying installed base. European Journal of Operational Research, 218( 1): 152–162
https://doi.org/10.1016/j.ejor.2011.10.026
23 T, Jin Z, Tian M, Xie (2015). A game-theoretical approach for optimizing maintenance, spares and service capacity in performance contracting. International Journal of Production Economics, 161: 31–43
https://doi.org/10.1016/j.ijpe.2014.11.010
24 S H, Kim M A, Cohen S, Netessine (2007). Performance contracting in after-sales service supply chains. Management Science, 53( 12): 1843–1858
https://doi.org/10.1287/mnsc.1070.0741
25 H L, Lee (1987). A multi-echelon inventory model for repairable items with emergency lateral transshipments. Management Science, 33( 10): 1302–1316
https://doi.org/10.1287/mnsc.33.10.1302
26 G, Levitin A, Lisnianski (1999). Joint redundancy and maintenance optimization for multistate series–parallel systems. Reliability Engineering & System Safety, 64( 1): 33–42
https://doi.org/10.1016/S0951-8320(98)00052-0
27 Y, Liu H Z, Huang Z, Wang Y, Li Y, Yang (2013). A joint redundancy and imperfect maintenance strategy optimization for multi-state systems. IEEE Transactions on Reliability, 62( 2): 368–378
https://doi.org/10.1109/TR.2013.2259193
28 D, Louit R, Pascual D, Banjevic A K S, Jardine (2011). Optimization models for critical spare parts inventories—a reliability approach. Journal of the Operational Research Society, 62( 6): 992–1004
https://doi.org/10.1057/jors.2010.49
29 R, Moghaddass M J, Zuo M, Pandey (2012). Optimal design and maintenance of a repairable multi-state system with standby components. Journal of Statistical Planning and Inference, 142( 8): 2409–2420
https://doi.org/10.1016/j.jspi.2012.02.045
30 A E, Mouatasim (2018). Implementation of reduced gradient with bisection algorithms for non-convex optimization problem via stochastic perturbation. Numerical Algorithms, 78( 1): 41–62
https://doi.org/10.1007/s11075-017-0366-1
31 M, Nourelfath E, Châtelet N, Nahas (2012). Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems. Reliability Engineering & System Safety, 103: 51–60
https://doi.org/10.1016/j.ress.2012.03.004
32 M C A, Olde Keizer R H, Teunter J, Veldman (2017). Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257( 1): 209–222
https://doi.org/10.1016/j.ejor.2016.07.047
33 K B, Öner A, Scheller-Wolf Houtum G J, van (2013). Redundancy optimization for critical components in high-availability technical systems. Operations Research, 61( 1): 244–264
https://doi.org/10.1287/opre.1120.1133
34 S S, Reddy P R, Bijwe (2018). An efficient optimal power flow using bisection method. Electrical Engineering, 100( 4): 2217–2229
https://doi.org/10.1007/s00202-018-0698-4
35 B, Selçuk S, Agrali (2013). Joint spare parts inventory and reliability decisions under a service constraint. Journal of the Operational Research Society, 64( 3): 446–458
https://doi.org/10.1057/jors.2012.38
36 K, Selviaridis F, Wynstra (2015). Performance-based contracting: a literature review and future research directions. International Journal of Production Research, 53( 12): 3505–3540
https://doi.org/10.1080/00207543.2014.978031
37 S, Si J, Zhao Z, Cai H, Dui (2020). Recent advancement in system reliability optimization driven by importance measures. Frontiers of Engineering Management, 7( 3): 335–358
https://doi.org/10.1007/s42524-020-0112-6
38 A, Sleptchenko M C, van der Heijden (2016). Joint optimization of redundancy level and spare part inventories. Reliability Engineering & System Safety, 153: 64–74
https://doi.org/10.1016/j.ress.2016.04.006
39 A, Sleptchenko M C, van der Heijden A, van Harten (2002). Effects of finite repair capacity in multi-echelon, multi-indenture service part supply systems. International Journal of Production Economics, 79( 3): 209–230
https://doi.org/10.1016/S0925-5273(02)00155-X
40 A, Sleptchenko M C, van der Heijden A, van Harten (2003). Trade-off between inventory and repair capacity in spare part networks. Journal of the Operational Research Society, 54( 3): 263–272
https://doi.org/10.1057/palgrave.jors.2601511
41 A, Van Horenbeek P, Scarf C, Cavalcante L, Pintelon (2013). The effect of maintenance quality on spare parts inventory for a fleet of assets. IEEE Transactions on Reliability, 62( 3): 596–607
https://doi.org/10.1109/TR.2013.2270409
42 T S, Vaughan (2005). Failure replacement and preventive maintenance spare parts ordering policy. European Journal of Operational Research, 161( 1): 183–190
https://doi.org/10.1016/j.ejor.2003.06.026
43 J, Wang X, Zhu (2021). Joint optimization of condition-based maintenance and inventory control for a k-out-of-n: F system of multi-state degrading components. European Journal of Operational Research, 290( 2): 514–529
https://doi.org/10.1016/j.ejor.2020.08.016
44 L, Wang J, Chu W, Mao (2009). A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research, 194( 1): 184–205
https://doi.org/10.1016/j.ejor.2007.12.012
45 W, Wang (2012). A stochastic model for joint spare parts inventory and planned maintenance optimization. European Journal of Operational Research, 216( 1): 127–139
https://doi.org/10.1016/j.ejor.2011.07.031
46 Z, Wang (2021). Current status and prospects of reliability systems engineering in China. Frontiers of Engineering Management, 8( 4): 492–502
https://doi.org/10.1007/s42524-021-0172-2
47 W Winston (2004). Operations Research: Applications and Algorithms, 4th ed., Chapter 20, pp. 1051–1131, Brooke/Cole Cengage Learning, Belmont, CA, USA
48 S Wu (2019). Superimposed Renewal Processes in Reliability. Wiley Stats Ref: Statistics Reference
49 S, Wu (2021). Two methods to approximate the superposition of imperfect failure processes. Reliability Engineering & System Safety, 207: 107332
https://doi.org/10.1016/j.ress.2020.107332
50 W, Xie H, Liao T, Jin (2014). Maximizing system availability through joint decision on redundancy allocation and spares inventory. European Journal of Operational Research, 237( 1): 164–176
https://doi.org/10.1016/j.ejor.2014.02.031
51 B, Yan Y, Zhou M, Zhang Z, Li (2023). Reliability-driven multiechelon inventory optimization with applications to service spare parts for wind turbines. IEEE Transactions on Reliability, 72( 2): 748–758
https://doi.org/10.1109/TR.2022.3178596
52 A, Zaretalab M, Sharifi P P, Guilani S, Taghipour S T A, Niaki (2022). A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems. Reliability Engineering & System Safety, 222: 108394
https://doi.org/10.1016/j.ress.2022.108394
53 J, Zhang X, Zhao Y, Song Q, Qiu (2022). Joint optimization of condition-based maintenance and spares inventory for a series–parallel system with two failure modes. Computers & Industrial Engineering, 168: 108094
https://doi.org/10.1016/j.cie.2022.108094
54 S, Zhang K, Huang Y, Yuan (2021). Spare parts inventory management: A literature review. Sustainability, 13( 5): 2460
https://doi.org/10.3390/su13052460
55 X, Zhao J, Zhang X, Wang (2019). Joint optimization of components redundancy, spares inventory and repairmen allocation for a standby series system. Proceedings of the Institution of Mechanical Engineers. Part O, Journal of Risk and Reliability, 233( 4): 623–638
https://doi.org/10.1177/1748006X18809498
56 S, Zhu W, Jaarsveld R, Dekker (2020). Spare parts inventory control based on maintenance planning. Reliability Engineering & System Safety, 193: 106600
https://doi.org/10.1016/j.ress.2019.106600
57 X, Zhu X, Bei N, Chatwattanasiri D W, Coit (2018). Optimal system design and sequential preventive maintenance under uncertain aperiodic-changing stresses. IEEE Transactions on Reliability, 67( 3): 907–919
https://doi.org/10.1109/TR.2018.2798298
58 X, Zhu J, Wang D W, Coit (2022). Joint optimization of spare part supply and opportunistic condition-based maintenance for onshore wind farms considering maintenance route. IEEE Transactions on Engineering Management, 71: 1086–1102
https://doi.org/10.1109/TEM.2022.3146361
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed