Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (3) : 357-367    https://doi.org/10.15302/J-FEM-2017025
RESEARCH ARTICLE
Process safety management considerations for biofuel production
Hao WU, Igor PEÑARRUBIA, Lin CUI, Jinsong ZHAO()
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(686 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The global production of bio-based chemical products, particularly biofuel products, has tremendously increased over the last decade. Driven largely by a new legislation, this increase has generated the commercialization of new products and processes. Unfortunately, alongside these developments were a significant number of accidents and explosions at biofuel facilities, entailing property damage, injury, and even deaths. The aim of this current study is to draw attention to incidents that occurred in biofuel facilities and clarify the misconceptions that cause people to ignore safety in bio-refineries. A process hazard analysis (PHA) method, namely the hazard and operability study (HAZOP), is first used in biofuel production. This method is an ethanol distillation and dehydration process. Through the HAZOP analysis, 36 recommended action items are proposed, and all recommendations are accepted. The case study reveals that potential high-level risks exist in the current biofuel process design and operating procedures, and these risks can be better controlled if they can be previously identified.

Keywords biofuel      HAZOP      PHA      risk management     
Corresponding Author(s): Jinsong ZHAO   
Just Accepted Date: 29 August 2017   Online First Date: 26 September 2017    Issue Date: 30 October 2017
 Cite this article:   
Hao WU,Igor PEÑARRUBIA,Lin CUI, et al. Process safety management considerations for biofuel production[J]. Front. Eng, 2017, 4(3): 357-367.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017025
https://academic.hep.com.cn/fem/EN/Y2017/V4/I3/357
Fig.1  (a) Accidents per billion barrels produced (Petroleum refinery vs. Ethanol); (b) Accidents per billion barrels produced (Petroleum refinery vs. Biodiesel)
Fig.2  (a) Flowchart of the HAZOP study procedure adapted from (IEC, 2001); (b) Flowchart of the HAZOP examination procedure adapted from (IEC, 2001)
Fig.3  Simplified biofuel ethanol distillation and dehydration process
ItemNumber
Distillation/Rectification column4
Adsorption column1
Tanks and containers13
Pumps29
Heat exchanger28
Control loops (except for the adsorption column)5 flow control; 4 pressure control
4 temperature control; 12 level control
Tab.1  Main equipment and control loops
Fig.4  (a) Statistics result of HAZOP study; (b) Risk matrix; (c) Results of estimated risks
NodeDeviationDeviation DescriptionCausesConsequencesSLRSafeguardsRecommendations
1CrackThe heat exchanger in the inlet pipeline of T-28 crackedThe heat exchanger E-17 inner leakThe feedstock will be blended with the production, the process must be shutdown53IIIThe operation procedure rules the production must be rechecked every 2h
1Pressure highThe pressure of T-28 is too highThe temperature of the cool water in the condenser on the T-28’s top is too highThe T-28 outlet gas'rsquo;s temperature is too high. The following condenser’s capability may be insufficient. The amount of the final production reduces up to 10%25III3. The cooling public utilities should be expanded
1LeakageThe reboiler E-15 leakageThe reboiler E-15 inner leaks1. The gas in T-28 leaks to the liquid. The production is lost partly
2. The heat will be wasted
54IVThe operation procedure rules the production must be rechecked every 2h
1No flowThe reboiler E-15 flowrate is zero1. Power failure
2. The E-15’s feed pump P-25 is damaged
The reboiler E-15 is over heated, result in blockage or coking53III
2Level lowT-32 aldehyde removing columnThe T-32 outlet pump P-30s flow rate is too high due to its outlet control value widely opened on error or the public utility’s faults. The level of column T-32 is decreased down to zero.The pump P-30 is empty, resulting in temperature raising. The potential fire and blasting hazard exists due to the high temperature53IIIThe pump has a output pressure indicator PT-172. Add an interlock: Stop the P-30A/B when the T-32’s level is too low
3No flowHeat exchanger E-06’s flow rate in tube pass (Dilute alcohol)1. The manual valve on T-03’s outlet pipe is closed by mistake. (In maintenance or startup/shutdown phase)
2. Feed-in pump P-30 failure
3. The manual valve on E-06’s outlet pipe is closed by mistake. (In maintenance or startup/shutdown phase)
1. E-06 or its accessory flanges are damaged by over pressure. Ethanol leakage will result in fire or explosion hazards
2. Refer to the consequences of the T-03’s temp-high deviation
54IV4. Add an interlock system to shut pump P-30 down when its outlet pressure is too high
5. Confirm that the manual valves are timely opened in the maintenance, startup and shutdown operating procedures
3No flowHeat exchanger E-06’s flow rate in shell pass (Hot water)1. The control valve on water line malfunction
2. The level controller on V-01 malfunction
T-03’s temperature decreases rapidly, which will result in process shutdown43III6. The V-01 has a twin backup vessel V-01B having its own level controller. The control strategy of the level controller on V-01 and V-01B should be changed to 2oo2
3Temperature lowT-03’s Temperature is too low1. Inlet flowrate is too high, refer to T-28’s deviation–flow high
2. The steam, feed into E-16, flowrate control valve PV-52 closed by fault
3. the steam pressure controller PT-52 closed by fault
4. The instrument-air failed
The steam feed into the T-03 through PV-52 is the main heat source of this process. Therefore, if the steam is failed, the whole process must be shutdown53III16. Inquire the instruments department, apply an auto switch system on the instrument-air compressor
17. Enforce the maintenance on PV-52 and PT-52, which should be added in the operation procedure
3Temperature highT-03’s Temperature is too HighThe steam, feed into E-02, pressure controller PT-52 opened by faultThe pressure of T-03 raised rapidly, the column may cracks52III7. Add a control loop, control the inlet steam flowrate by T-03’s pressure or temperature
10. Add relief valve on T-03
3Temperature highT-03’s Temperature is too HighThe heat exchanger E-15/19’s efficiency decreased after long time workingT-03’s top reflux is insufficient, then T-03’s pressure increases, which make a positive feedback loop, resulting in the temperature and pressure increasing continuously25III7. Add a control loop, control the inlet steam flowrate by T-03’s pressure or temperature
3Level highT-03’s bottom levelThe T-03’s bottom level controller frozen in winterThe column T-03 is flooded25IIIInsulating cover is applied8. Add some insulating measures against the frozen, such as heat tracing on the level control pipe lines
9. Add another different type instruments for generating level high alarm
3Level lowThe level on vessel V-08 is too lowThe control valve on the P-31’s outlet is widely opened by faultThe pump P-31 is empty, resulting in temperature raising. The potential fire and blasting hazard exists due to the high temperature54IV12. Add an interlock: Stop the P-31 when the V-08’s level is too low
3Level lowThe level on vessel V-08 is too lowThe level controller on V-08 faultNo reflux to T-03, the temperature and pressure of T-03 increased (Refer to the T-03’s temperature high deviation)43III
4Pressure highT-11’s pressure is too highThe auxiliary steam valve is opened by operator’s mistakeOver-pressure results in the column leakage or pipeline leakages, may result in fire or blasting53III14. Add a relief valve on the distillation column T-11
4Level lowT-11’s bottom level is too lowThe level control valve is opened by fault, or by instrument-air failureThe heat exchanger E-09 is over heated, result in blockage or coking54IVLevel low alarm exists19. Add an interlock: Stop P-21 when the T-11 level is too low
5Temperature lowT-21’s temperature is too lowThe steam control valve is closed due to the steam feed in controller failure, or by instrument-air failureTemperature decreased, much more ethanol is pumped out through the waste fluid pipeline. Ethanol lost53III16. Inquire the instruments department, apply an auto switch system on the instrument-air compressor
5Temperature highT-21’s temperature is too highThe heat exchanger E-17’s efficiency decreased after long time workingNo reflux to T-21, the temperature and pressure of T-21 increased25III
5Level highT-21’s bottom level is too highThe T-03’s bottom level controller frozen in winterThe column T-21 is flooded, the process must be shutdown25III8. Add some insulating measures against the frozen, such as heat tracing on the level control pipe lines
9. Add another different type instruments for generating level high alarm
5Level highT-21’s bottom level is too highPump P-19 failedT-21 will serious flood. Furthermore the T-21 may be damaged due to the liquid weight52III29. Enforce the maintenance and routing inspection on P-19
5LeakageE-17 inner leakageE-17 inner leakageFeedstock blends with the production gas, result in the increase of COD. The cost of waste water treatment will increase54IVThe operation procedure rules the production must be rechecked every 2 h
5Level lowV-24’s Level is too lowThe control valve on the P-20s outlet is widely opened by failureThe pump P-20 is empty, resulting in temperature raising. The potential fire and blasting hazard exists due to the high temperature54IV25. Add an interlock: Stop P-20 when the V-24 level is too low
5Level lowV-24’s Level is too lowThe level controller on V-24 failedNo reflux to T-21, the temperature and pressure of T-21 increased(Refer to the T-21’s temperature high deviation)43III
Tab.2  HAZOP results with risk level III and IV
RecommendationsType
1. Enforce the maintenance management2
2. Add an interlock: Stop the P-30A/B when the T-32’s level is too low4
3. The cooling public utilities should be expanded3
4. Add an interlock system to shut pump P-30 down when its outlet pressure is too high4
5. Confirm that the manual valves are timely opened in the maintenance, startup and shutdown operating procedures1
6. The V-01 has a twin backup vessel V-01B having its own level controller. The control strategy of the level controller on V-01 and V-01B should be changed to 2oo24
7. Add a control loop, control the inlet steam flowrate by T-03’s pressure or temperature4
8. Add some insulating measures against the frozen, such as heat tracing on the level control pipe lines3
9. Add another different type instruments for generating level high alarm4
10. Add relief valve on T-033
11. Add a flammable gas alarm near the E-26’s vent outlet4
12. Add an interlock: Stop the P-31 when the V-08’s level is too low4
13. Add a interlock: close the steam valve P53 when T-11’s temperature is too high4
14. Add a relief valve on the distillation column T-113
15. Enforce the management, ensure the inspection without break2
16. Inquire the instruments department, apply an auto switch system on the instrument-air compressor4
17. Enforce the maintenance on PV-52 and PT-52, which should be added in the operation procedure1
18. Add a warm measures on the level controller LIT-8033
19. Add an interlock: Stop P-21 when the T-11 level is too low4
20. Add a flammable gas alarm near the E-36’s vent outlet4
21. Change the TV-18 from air-to-open to air-to-close4
22. Add routing verification on TV-118 in operation procedure1
23. Add suit equipment (vessel, column, etc.) for absorption3
24. Add routing verification on TV-120 in operation procedure1
25. Add an interlock: Stop P-20 when the V-24 level is too low4
26. Add more maintenance actions on PV-043, should be added in the operation procedure1
27. Add a control loop: control the steam feed in by T-21’s pressure or temperature4
28. Add more maintenance actions on PT-034,352
29. Enforce the maintenance and routing inspection on P-192
30. Add a warm measures on the level controller LIT-8053
31. Add an interlock: Stop P-59 when the FIT-98’s flowrate is zero4
32. Add more labor on the T-01’s supervisor controlling2
33. Add an online hygrometer in the E-07’s outlet pipeline4
34. Enforce the inspection on the pump P-791
35. Build a dam around the V-783
36. Add an interlock: Stop P-79 when the FIT-74’s flowrate is zero4
Tab.3  Recommendation list
Recommendation typesNumber
1. Operating procedure modification6
2. Maintenance inspection enhancement5
3. Equipment modification8
4. Instrumentation system modification/addition17
Tab.4  Summary of the recommendations
Fig.5  Main user interface of PSMSuite®
1 Baybutt P (2015). Competency requirements for process hazard analysis (PHA) teams. Journal of Loss Prevention in the Process Industries, 33: 151–158
https://doi.org/10.1016/j.jlp.2014.11.023
2 Calvo Olivares R D, Rivera S S, Núñez Mc Leod J E (2014). Database for accidents and incidents in the biodiesel industry. Journal of Loss Prevention in the Process Industries, 29: 245–261
https://doi.org/10.1016/j.jlp.2014.03.010
3 Calvo Olivares R D, Rivera S S, Núñez Mc Leod J E (2015). Database for accidents and incidents in the fuel ethanol industry. Journal of Loss Prevention in the Process Industries, 38: 276–297
https://doi.org/10.1016/j.jlp.2015.10.008
4 Casson Moreno V, Cozzani V (2015). Major accident hazard in bioenergy production. Journal of Loss Prevention in the Process Industries, 35: 135–144
https://doi.org/10.1016/j.jlp.2015.04.004
5 Chimica D, Federico N (2010). Emerging safety issues for biodiesel production plant. In: Proc. of CISAP4- 4th International Conference on Safety & Environment in Process Industry
6 CIA (1997). A Guide to Hazard and Operability Studies. Chemical Industries Association, UK
7 Demirbas A (2009). Green energy and technology: Biofuels- securing the planet’s future energy needs 
https://doi.org/10.1007/978-1-84882-011-1
8 Gómez G E, Ramos M A, Cadena J E, Gomez J M, Munoz F (2013). Inherently safer design applied to the biodiesel production. Chemical Engineering Transactions, 31: 619–624
9 Hansen A C, Zhang Q, Lyne P W L (2005). Ethanol-diesel fuel blends—A review. Bioresource Technology, 96(3): 277–285 
https://doi.org/10.1016/j.biortech.2004.04.007 pmid: 15474927
10 Ho D P, Ngo H H, Guo W (2014). A mini review on renewable sources for biofuel. Bioresource Technology, 169: 742–749
https://doi.org/10.1016/j.biortech.2014.07.022 pmid: 25115598
11 IEC (2001). IEC, 61882: 2001 (Hazard and operability studies ) (HAZOP studies) ( - Application guide.)
12 Kang S M (2009). Fundamental concepts of risk assessment and risk criteria. In: Guidelines for Developing Quantitative Safety Risk Criteria. American Institute of Chemical Engineers, 1–43
13 Kletz T A (1999). HAZOP and HAZAN- Identifying and Assessing Process Industry Hazards, 4th ed. CRC Press, Rugby, UK
14 Luo H (2010). The effectiveness of U.S. OSHA process safety management inspection—A preliminary quantitative evaluation. Journal of Loss Prevention in the Process Industries, 23(3): 455–461
https://doi.org/10.1016/j.jlp.2010.02.004
15 Ma F, Hanna M A (1999). Biodiesel production: A review. Bioresource Technology, 70(1): 1–15
https://doi.org/10.1016/S0960-8524(99)00025-5
16 Moss P (2010). Biodiesel Plant Safety. Biodiesel Magazine, 
17 OECD-FAO (2016). OECD-FAO Agricultural Outlook 2016–2025 Biofuel. 
18 Sovacool B K, Andersen R, Sorensen S, Sorensen K, Tienda V, Vainorius A, S chirach O M, Bjorn-Thygesen F (2015). Balancing safety with sustainability: Assessing the risk of accidents for modern low-carbon energy systems. Journal of Cleaner Production, 112: 3952–3965 
https://doi.org/10.1016/j.jclepro.2015.07.059
19 Zhang Y, Dubé M A, McLean D D, Kates M (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1): 1–16 
https://doi.org/10.1016/S0960-8524(03)00040-3 pmid: 12676496
20 Zhao J, Cui L, Zhao L, Qiu T, Chen B (2009). Learning HAZOP expert system by case-based reasoning and ontology. Computers & Chemical Engineering, 33(1): 371–378 
https://doi.org/10.1016/j.compchemeng.2008.10.006
[1] Jian LI, Shichao ZHU, Wen ZHANG, Lean YU. Blockchain-driven supply chain finance solution for small and medium enterprises[J]. Front. Eng, 2020, 7(4): 500-511.
[2] Zachary A. COLLIER, James H. LAMBERT. Managing obsolescence of embedded hardware and software in secure and trusted systems[J]. Front. Eng, 2020, 7(2): 172-181.
[3] Markus AUER, Hubert REHBORN, Sven-Eric MOLZAHN, Micha KOLLER. Traffic services for vehicles: the process from receiving raw probe data to space-time diagrams and the resulting traffic service[J]. Front. Eng, 2017, 4(4): 490-497.
[4] Guan-feng An,Wen-yuan Huang,Jing-feng Zhang. Green Road Construction Technologies in Guangzhou[J]. Front. Eng, 2016, 3(1): 80-86.
[5] Ji-liang Zheng,Jun Hu,Xuan Zhou,Ching Yuen Luk. Ecological Risk Management of Drinking Water Project: The Case Study of Kunming City[J]. Front. Eng, 2015, 2(3): 311-319.
[6] Roger Flanagan. Whole-life Thinking and Engineering the Future[J]. Front. Eng, 2014, 1(3): 290-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed