Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    0, Vol. Issue () : 51-56    https://doi.org/10.1007/s11707-009-0018-4
RESEARCH ARTICLE
Coincident negative shifts in sulfur and carbon isotope compositions prior to the end-Permian mass extinction at Shangsi Section of Guangyuan, South China
Pengwei LI1,2, Junhua HUANG1,2(), Min CHEN3, Xiao BAI1
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China; 2. Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 3. Faculty of Material Science and Chemistry Engineering, China University of Geosciences, Wuhan 430074, China
 Download: PDF(227 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sulfur isotope composition of carbonate-associated sulfate (δ34SCAS) and carbon isotope composition of carbonate (δ13Ccarb) were jointly investigated on the Late Permian rocks at Shangsi Section, Guanyuan, Northeast Sichuan, South China. Both δ34SCAS and δ13Ccarb show gradual decline trends in Late Permian strata, inferring the occurrence of the long-term variation of marine environmental conditions. Associated with the long-term variation are the two coincident negative shifts in δ34SCAS and δ13Ccarb, with one occurring at the boundary between Middle Permian Maokou Formation and Late Permian Wujiaping Formation and another at Middle Dalong Formation. Of significance is the second shift which clearly predates the regression and the biotic crisis at the end of Permian at Shangsi Section, providing evidence that a catastrophic event occurred prior to the biotic crisis. The frequent volcanisms indicated by the volcanic rocks or fragments, and the upwelling are proposed to cause the second negative excursion. An abrupt extreme negative δ34SCAS (ca. -20‰) associated with a low relative concentration of CAS and total organic carbon without large change in δ13Ccarb is found at the end of the second shift, which might arise from the short-term oxygenation of bottom waters and sediments that resulted from the abrupt sea level drop.

Keywords carbonate-associated sulfate      sulfur isotope      mass extinction      Late Permian      South China     
Corresponding Author(s): HUANG Junhua,Email:jhhuang@cug.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Junhua HUANG,Min CHEN,Xiao BAI, et al. Coincident negative shifts in sulfur and carbon isotope compositions prior to the end-Permian mass extinction at Shangsi Section of Guangyuan, South China[J]. Front Earth Sci Chin, 0, (): 51-56.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0018-4
https://academic.hep.com.cn/fesci/EN/Y0/V/I/51
Fig.1  Paleogeographic map showing the ever locations of the studied section and the modern one giving the detail position of Shangsi section (, ). 1. Shangsi and Meishan sections of South China; 2. Bálvány Section of Hungary, 3. Siusi section of northern Italy
Fig.2  Lithostratigraphy and the geochemical profiles of the sulfur isotope compositions of carbonate-associated sulfate and the relative concentration of CAS, together with the previously reported carbon isotope composition of carbonate (), and the content of total organic carbon (TOC) (). The depositional environments and bed No. are after Jin and Huang. (). The two negative shifts mentioned in the paper are labeled with gray shadow bar 1 and 2, respectively and bar 3 shows the minima of S
1 Bai X, Luo G M, Wu X, Wang Y Z, Huang J H (2008). Carbon isotope records indicative of paleo-oceanographical events at the latest Permian Dalong Formation at Shangsi, North Sichuan, China. Journal of China University of Geosciences , 19(5): 481-487
doi: 10.1016/S1002-0705(08)60053-9
2 Burdett J W, Arthur M A, Richardson M (1989). A Neogene seawater sulfur isotope age curve from calcareous pelagicmicrofossils. Earth Planet Sci Lett. , 94:189-198
doi: 10.1016/0012-821X(89)90138-6
3 Cao C Q, Wang W, Jin Y G (2002). Carbon isotope excursion across the Permian–Triassic boundary in the Meishan Section, Zhejiang Province, China. Chinese Science Bulletin , 47: 1125-1129
doi: 10.1360/02tb9252
4 Erwin D H (1994). The Permo–Triassic extinction. Nature , 367: 231-236
doi: 10.1038/367231a0
5 Gao Z Y, Xu D Y (1987). Discovery and study of microspherules at the Permian–Triassic boundary of the Shangsi Section, Guangyuan, Sichuan. Geological Review , 33(3):203-212 (in Chinese with English abstract)
6 Goldberg T, Poulton S W, Trauss H (2005). Sulphur and oxygen isotope signatures of Late Neoproterozoic to Early Cambrian sulphate, Yangtze platform, China: Diageneticconstraints and seawater evolution. Precambrian Research , 137: 223-241
doi: 10.1016/j.precamres.2005.03.003
7 Hurtgen M T, Arthur M A, Suits N S, Kaufman A J (2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth? Earth and Planetary Science Letters , 203: 413-429
doi: 10.1016/S0012-821X(02)00804-X
8 Jin R G, Huang H Q (1987). Sedimentary features and environmental evolution of the Permian–Triassic boundary section in Shangsi, Guangyuan, Sichuan Province. Professional Papers of Stratigraphy and Palaeontology , (8):32-75 (in Chinese with English abstract)
9 Jin R G, Shen G M, Xu X G, Huang H Q (1986). Sedimentary characters and origin of the boundary clay rocks of Permo-Triassic in the region of Guangyuan, Sichuan province.Petrological and Mineral Magazine (2):107-119 (in Chinese with English abstract)
10 Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H (2000). Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science , 289: 432-436
doi: 10.1126/science.289.5478.432
11 Kaiho K, Chen Z Q, Miura Y, Kawahata H, Kajiwara Y, Sato H (2006a). Close-up of the end-Permian mass extinction horizon recorded in the Meishan Section, South China: Sedimentary, elemental, and biotic characterization with a negative shift of sulfate sulfur isotope ratio. Palaeogeography, Palaeoclimatology, Palaeoecology , 239: 396-405
doi: 10.1016/j.palaeo.2006.02.011
12 Kaiho K, Kajiwara Y, Chen Z Q, Gorjan P (2006b). A sulfur isotope event at the end of the Permian. Chemical Geology , 235: 33-47
doi: 10.1016/j.chemgeo.2006.06.001
13 Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kawahata H, Tazaki K, Ueshima M, Chen Z Q, Shi G R (2001). End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology , 29: 815-818
doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2
14 Kakuwa Y (2008). Evaluation of palaeo-oxygenation of the ocean bottom across the Permian–Triassic boundary. Global and Planetary Change , 63: 40-56
doi: 10.1016/j.gloplacha.2008.05.002
15 Kampschulte A, Bruckschen P, Strauss H (2001). The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: Iimplications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy. Chem Geol , 175: 165-189
doi: 10.1016/S0009-2541(00)00367-3
16 Kampschulte A, Strauss H (2004). The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol , 204: 255-286
doi: 10.1016/j.chemgeo.2003.11.013
17 Luther G W (1997). Comment on “Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(Ⅲ) ions around pH 2” by K. Sasaki, M. Tsunekawa, T. Ohtsuka, and H. Konno. Geochimica et Cosmochimica Acta , 61(15): 3269-3271
doi: 10.1016/S0016-7037(97)00144-0
18 Lü B Q, Wang H G, Hu W S, Shen W F, Zhang Y L (2004). Relationship between Paleozoic upwelling facies and hydrocarbon in southeastern marginal Yangtze block. Marine Geology & Quaternary Geology , 24(4): 29-35 (in Chinese with English abstract)
19 Marenco P J, Corsetti F A, Hammond D E, Kaufman A J, Bottjer D J (2008). Oxidation of pyrite during extraction of carbonate associated sulfate. Chemical Geology , 247: 124-132
doi: 10.1016/j.chemgeo.2007.10.006
20 Maruoka T, Koeberl C, Hancox P J, Reimold W U (2003). Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo basin, South Africa. Earth and Planetary Science Letters , 206: 101-117
doi: 10.1016/S0012-821X(02)01087-7
21 Mazumdar A, Goldberg T, Strauss H (2008). Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments. Chemical Geology , 253: 30-37
doi: 10.1016/j.chemgeo.2008.03.014
22 Newton R J, Pevitt E L, Wignall P B, Bottrell S H (2004). Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth and Planetary Science Letters , 218: 331-345
doi: 10.1016/S0012-821X(03)00676-9
23 Pingitore N E,βMeitzner G,βLove K M (1995). Identification of sulfate in natural carbonates by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta , 59: 2477-2483
doi: 10.1016/0016-7037(95)00142-5
24 Riccardi A, Arthur M, Kump L (2006). Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta , 70: 5740-5752
doi: 10.1016/j.gca.2006.08.005
25 Riccardi A, Kump L, Arthur M, Hondt S D (2007). Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology , 248: 73-81
doi: 10.1016/j.palaeo.2006.11.010
26 Ruan X Y, Luo G M, Hu S Z, Chen F, Sun S, Wu W J, Guo Q Z, Liu G Q (2008). Molecular records of the primary producers and sedimentary environmental conditions of Late Permian rocks in Northeast Sichuan, China. China. Journal of China University of Geosciences , 19(5): 470-480
27 Scotese C R, Langford R P (1995). Pangea and the paleogeography of the Permian. In: Scholle A, Peryt T M, Ulmer-Scholle D A, eds. The Permian of Northern Pangea.Berlin: Springer, (1): 3-19
28 Staudt W J, Schoonen M A A (1995). Sulfate incorporation into sedimentary carbonates, geochemical transformations of sedimentary sulfur. ACS Symposium Series 612. Washington, DC: American Chemical Society, 332-345
29 Strauss H (1999). Geological evolution from isotope proxy signals—Sulfur. Chem Geol , 161: 89-101
doi: 10.1016/S0009-2541(99)00082-0
30 Takano B (1985). Geochemical implications of sulfate in sedimentary carbonates. Chemical Geology , 49: 393-403
doi: 10.1016/0009-2541(85)90001-4
31 Wynn P M, Fairchild I J, Baker A, Baldini J U L, McDermott F (2008). Isotopic archives of sulphate in speleothems. Geochimica et Cosmochimica Acta , 72: 2465-2477
doi: 10.1016/j.gca.2008.03.002
32 Xie S C, Pancost R D, Huang J H, Wignall P B, Yu J X, Tang X Y, Chen L, Huang X Y, Lai X L (2007). Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology , 35(12): 1083-1086
doi: 10.1130/G24224A.1
33 Xie X N, Li H J, Xiong X, Huang J H, Yan J X, Qin J Z, Tenger, Li W (2008). Main effect factors of organic matters richness in Permian section of Guangyuan area, Northeastern Sichuan, China. Journal of China University of Geosciences , 19(5): 507-517
doi: 10.1016/S1002-0705(08)60056-4
34 Xu D Y, Ma S L, Chai Z F, Mao X Y, Sun Y Y, ZhangβQ W, YangβZ Z (1985). Abundance variation of iridium and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature ,314: 154-156
doi: 10.1038/314154a0
35 Yan J X, Ma Z X, Xie X N, Xue W Q, Li B, Liu D Q (2008). Subdivision of Permian fossil communities and habitat types in Northeastern Sichuan, South China. Journal of China University of Geosciences , 19(5): 441-450
doi: 10.1016/S1002-0705(08)60049-7
36 Zhang Q W, Mao X Y, Chai Z F, Xu D Y, Yang Z Z, Sun Y Y (1984). Geological events at the boundary of Precambrian and Cambrian. International Geological Theses Set (1) . Beijing: Geological Publishing House, (1): 143-162 (in Chinese)
[1] Yang DING, Zhigang YAO, Lingling ZHOU, Min BAO, Zhengchen ZANG. Numerical modeling of the seasonal circulation in the coastal ocean of the Northern South China Sea[J]. Front. Earth Sci., 2020, 14(1): 90-109.
[2] Chao FU, Xinghe YU, Xue FAN, Yulin HE, Jinqiang LIANG, Shunli LI. Classification of mass-transport complexes and distribution of gashydrate-bearing sediments in the northeastern continental slope of the South China Sea[J]. Front. Earth Sci., 2020, 14(1): 25-36.
[3] Xiaoyin TANG, Shuchun YANG, Shengbiao HU. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea[J]. Front. Earth Sci., 2018, 12(3): 532-544.
[4] Zheng WANG, Zhihua MAO, Junshi XIA, Peijun DU, Liangliang SHI, Haiqing HUANG, Tianyu WANG, Fang GONG, Qiankun ZHU. Data fusion in data scarce areas using a back-propagation artificial neural network model: a case study of the South China Sea[J]. Front. Earth Sci., 2018, 12(2): 280-298.
[5] Jiali CHEN, Pengju HU, Xing LI, Yang YANG, Jinming SONG, Xuegang LI, Huamao YUAN, Ning LI, Xiaoxia LÜ. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas[J]. Front. Earth Sci., 2018, 12(1): 95-107.
[6] Xiaoyin TANG, Shuchun YANG, Junzhang ZHU, Zulie LONG, Guangzheng JIANG, Shaopeng HUANG, Shengbiao HU. Tectonic subsidence of the Zhu 1 Sub-basin in the Pearl River Mouth Basin, northern South China Sea[J]. Front. Earth Sci., 2017, 11(4): 729-739.
[7] YAN Jiaxin, LIU Xinyu. Geobiological interpretation of the oxygen-deficient deposits of the Middle Permian marine source rocks in South China: A working hypothesis[J]. Front. Earth Sci., 2007, 1(4): 431-437.
[8] ZHANG Zhifeng, CAI Xiongfei, PENG Xingfang, FENG Qinglai. Depositional characteristics of Dalong Formation and its potential as hydrocarbon source rocks in Hubei, Hunan, Guizhou and Guangxi[J]. Front. Earth Sci., 2007, 1(4): 452-457.
[9] YIN Hongfu, YU Jianxin, HE Weihong, LAI Xulong, FENG Qinglai, XIE Shucheng, HUANG Xianyu, LIANG Handong. Recent achievements on the research of the Paleozoic-Mesozoic transitional period in South China[J]. Front. Earth Sci., 2007, 1(2): 129-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed