Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 95-107    https://doi.org/10.1007/s11707-016-0620-1
RESEARCH ARTICLE
Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas
Jiali CHEN1,2,5, Pengju HU1,2, Xing LI1,3, Yang YANG1, Jinming SONG4, Xuegang LI4, Huamao YUAN4, Ning LI4, Xiaoxia LÜ1,3()
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
2. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
3. College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
4. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
5. No.5 Middle School of Nan Chang, Nanchang 330029, China
 Download: PDF(2165 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (ΔT) between derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.

Keywords iGDGTs      distribution      South China Sea (SCS)      sea surface temperature      water depth     
Corresponding Author(s): Xiaoxia LÜ   
Just Accepted Date: 14 December 2016   Online First Date: 24 January 2017    Issue Date: 23 January 2018
 Cite this article:   
Jiali CHEN,Pengju HU,Xing LI, et al. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas[J]. Front. Earth Sci., 2018, 12(1): 95-107.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0620-1
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/95
Fig.1  Structures of isoprenoid GDGTs and branched GDGTs.
Fig.2  Sampling sites in the SCS. WD: water depth.
Site longtitude(°E) latitude(°N) TEX86H TEX86H-SST /?C Water depth /m Salinity /psu NO3?/(µmol·L?1) TALK/(µmol·kg?1) Oxygen /(mL·L?1) TCO2 /(µmol·kg?1) AM-SST/°C SST-Spring/°C SST-Summer/°C SST-Autumn/°C SST-Winner/°C
S-1 111.53 21.32 ?0.28 19.48 18.30 33.65 0.62 2079.00 4.90 1911.50 25.22 23.89 29.15 27.19 20.62
S-2 112.06 20.65 ?0.25 21.22 60.80 33.87 0.56 2091.00 4.86 1912.00 25.71 24.72 29.04 27.31 21.79
S-3 112.40 20.22 ?0.22 23.43 80.00 33.93 0.55 1092.00 4.85 1912.00 26.04 25.24 29.03 27.45 22.47
S-4 113.22 19.21 ?0.17 27.03 453.00 33.94 0.57 2089.00 4.80 1909.00 26.75 26.39 29.21 27.75 23.59
S-5 110.96 21.19 ?0.29 18.55 12.70 33.56 0.59 2070.00 4.89 1910.50 25.12 23.77 29.29 27.22 20.48
S-6 111.59 20.39 ?0.25 21.16 62.10 33.91 0.55 1091.00 4.85 1911.50 25.77 24.79 29.17 27.42 21.79
S-7 110.61 20.99 ?0.28 19.53 2.70 33.50 0.56 2062.00 4.88 1909.00 25.21 23.77 29.31 27.26 20.50
S-8 110.73 20.83 ?0.26 20.78 14.40 33.58 0.56 2069.00 4.87 1910.50 25.32 23.99 29.33 27.30 20.76
S-9 111.07 20.41 ?0.29 18.78 40.60 33.79 0.55 2082.00 4.85 1911.00 25.69 24.59 29.26 27.39 21.49
S-10 111.70 19.59 ?0.22 23.76 106.20 33.98 0.55 2091.00 4.81 1911.80 26.23 25.75 29.28 27.60 22.85
S-11 112.32 18.80 ?0.17 27.04 330.00 33.96 0.59 2087.00 4.78 1908.50 26.83 26.62 29.26 27.78 23.73
S-12 111.42 19.71 ?0.23 22.65 79.00 33.96 0.55 2090.00 4.81 1911.90 26.23 25.57 29.27 27.56 22.60
S-13 111.53 19.58 ?0.23 22.65 100.70 33.98 0.55 2091.00 4.81 1911.80 26.33 25.75 29.27 27.60 22.81
S-14 111.64 19.45 ?0.21 24.41 115.80 33.98 0.56 2091.00 4.80 1911.70 26.44 25.93 29.26 27.64 23.00
S-15 111.75 19.32 ?0.20 25.00 132.70 33.98 0.56 2091.00 4.80 1911.50 26.53 26.07 29.26 27.68 23.14
S-16 111.85 19.18 ?0.19 25.63 146.30 33.98 0.57 2090.00 4.80 1911.00 26.62 26.23 29.26 27.73 22.35
S-17 110.98 19.55 ?0.22 23.58 20.70 33.85 0.54 2084.00 4.81 1911.00 26.26 25.59 29.34 27.61 22.62
S-18 111.08 19.49 ?0.27 19.89 66.30 33.91 0.54 2086.00 4.80 1911.50 26.35 25.73 29.34 27.62 22.75
S-19 111.53 19.24 ?0.20 24.66 124.90 33.98 0.56 2089.00 4.79 1910.80 26.56 26.12 29.32 27.72 23.23
S-20 110.98 19.07 ?0.25 21.73 99.70 33.90 0.56 2084.00 4.79 1910.50 26.87 26.14 29.41 27.73 23.25
S-21 111.20 18.98 ?0.23 22.89 120.60 33.94 0.57 2087.00 4.79 1910.30 26.93 26.16 29.40 27.73 23.42
S-22 112.01 18.63 ?0.18 26.49 504.70 33.96 0.60 2086.00 4.75 1908.00 26.93 26.74 29.35 27.82 23.87
S-23 111.11 18.63 ?0.21 24.43 147.80 33.93 0.58 2083.00 4.72 1909.00 26.92 26.62 29.44 27.82 23.75
S-24 111.02 18.23 ?0.18 26.07 410.70 33.89 0.57 2081.00 4.76 1907.50 27.11 26.89 29.50 27.93 24.12
S-25 110.12 18.27 ?0.23 22.91 42.70 33.75 0.49 2074.00 4.74 1908.00 26.95 26.59 29.53 27.83 23.89
S-26 110.57 18.01 ?0.24 22.46 156.80 33.82 0.53 2077.00 4.74 1907.50 27.17 26.93 29.53 27.93 24.25
S-27 109.99 17.84 ?0.23 22.94 66.00 33.74 0.49 2070.00 4.71 1907.20 27.13 26.81 29.56 27.93 24.24
S-28 109.92 17.69 ?0.23 22.73 105.70 33.73 0.49 2068.00 4.71 1907.00 27.17 26.84 29.58 27.95 24.29
Tab.1  Environmental parameters (water depth is obtained in situ using CTD; other parameters are obtained from two online datasets)
Site GDGT-0 GDGT-1 GDGT-2 GDGT-3 Cren. Cren.iso
S-1 0.33 0.08 0.06 0.02 0.50 0.01
S-2 0.21 0.07 0.05 0.02 0.64 0.01
S-3 0.25 0.09 0.08 0.03 0.52 0.02
S-4 0.22 0.07 0.08 0.02 0.56 0.05
S-5 0.21 0.05 0.04 0.01 0.68 0.01
S-6 0.22 0.06 0.05 0.02 0.64 0.01
S-7 0.22 0.06 0.04 0.02 0.65 0.01
S-8 0.22 0.06 0.04 0.03 0.64 0.01
S-9 0.22 0.06 0.04 0.01 0.67 0.01
S-10 0.19 0.06 0.06 0.02 0.64 0.02
S-11 0.21 0.07 0.08 0.02 0.57 0.05
S-12 0.20 0.06 0.06 0.02 0.64 0.02
S-13 0.20 0.07 0.05 0.02 0.64 0.02
S-14 0.13 0.07 0.07 0.02 0.68 0.03
S-15 0.18 0.07 0.06 0.02 0.64 0.03
S-16 0.19 0.07 0.07 0.02 0.61 0.03
S-17 0.19 0.07 0.06 0.03 0.65 0.01
S-18 0.23 0.06 0.04 0.02 0.63 0.01
S-19 0.19 0.07 0.06 0.02 0.64 0.02
S-20 0.21 0.06 0.05 0.02 0.65 0.01
S-21 0.20 0.07 0.06 0.02 0.64 0.02
S-22 0.22 0.07 0.08 0.02 0.56 0.04
S-23 0.19 0.07 0.07 0.02 0.62 0.02
S-24 0.19 0.07 0.07 0.02 0.61 0.04
S-25 0.19 0.06 0.05 0.02 0.66 0.01
S-26 0.20 0.06 0.05 0.02 0.65 0.01
S-27 0.21 0.06 0.06 0.02 0.64 0.02
S-28 0.21 0.06 0.05 0.02 0.64 0.02
Tab.2  Relative abundance of iGDGTs in SCS sediment (%)
Fig.3  The spatial distribution of iGDGTs concentration.
Fig.4  The spatial distribution of bGDGTs concentration. Major bGDGTs= bGDGT-I+ bGDGT-II+ bGDGT-III. Cyclic bGDGTs= bGDGT-Ib+ bGDGT-Ic+ bGDGT-IIb+ bGDGT-IIc+ bGDGT-IIIb+ bGDGT-IIIc.
Fig.5  The distribution of BIT.
Fig.6  Results of RDA analysis. (a) Triplot obtained by the RDA using six iGDGTs, 51.1% of the variation was explained by the first axis (RDA1) and 14.1% of the variation by the second axis (RDA2). (b) RDA triplot based on only four iGDGTs used for TEX86H. The RDA1 explained 79.9% of the variation and the RDA2 explained 8.1% of the variation. Blue open circles indicate the scores of the samples from>200 m water depth and black open circles from<200 m water depth.
Variable SST-Spring NO3? WD Salinity TALK SST-Summer TCO2 SST-Autumn AM-SST SST-
Winner
Oxygen
λ/% 12 17 12 9 8 3 3 1 1 0 0
p 0.006 0.024 0.028 0.044 0.108 0.25 0.284 0.538 0.548 0.788 0.936
Tab.3  The RDA result with all iGDGT compounds applied
Variable WD NO3- SST-Autumn TCO2 SST-Summer TALK AM-SST SST-Winner Salinity Oxygen SST-Spring
λ/% 52 8 7 8 7 2 2 2 1 0 0
p 0.002 0.002 0.008 0.012 0.044 0.044 0.108 0.152 0.156 0.648 0.978
Tab.4  The RDA result with only four GDGT compounds applied
Fig.7  Fractional abundance of crenarchaeol regio-isomer (Cren’) and the GDGT-2/GDGT-3 ratio. The blue diamond represent the samples from<200 m water depth and the red diamond from>200 m water depth.
Fig.8  Difference (ΔT) between TEX86H derived temperature and remote-sensing SSTs from different water depth. The green triangle represents annual mean sea surface temperature, the blue diamond represents the temperature in 20 m water depth and the red square represents the temperature in 50 m water depth.
Fig.9  Difference (ΔT) between TEX86H–derived temperature and seasonal remote-sensing SSTs. The blue diamond represents the samples from<200 m water depth and the red diamond represents that from<200 m water depth.
Variable Total Unique
λ/% p λ/% p
SST-Spring 12.0 0.006 4.0 0.722
NO3? 17.0 0.024 10.7 0.04
WD 12.0 0.028 0.6 0.654
Salinity 9.0 0.044 9.7 0.048
All variables 66.0
Joint effects 51.0
Tab.5  Results of RDA and partial RDA showing variance (%) in iGDGT composition explained by all significant environment variables (n=28)
1 Basse A, Zhu  C, Versteegh G J M,  Fischer G,  Hinrichs K,  Mollenhauer G (2014). Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa. Org Geochem, 72: 1–13
https://doi.org/10.1016/j.orggeochem.2014.04.007
2 De Rosa M, Esposito  E, Gambacorta A,  Nicolaus B,  Bu'Lock J D (1980). Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry, 19(5): 827–831
https://doi.org/10.1016/0031-9422(80)85120-X
3 Francis C A, Roberts  K J, Beman  J M, Santoro  A E, Oakley  B B (2005). Ubiquity and diversity of ammonia oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102(41): 14683–14688
https://doi.org/10.1073/pnas.0506625102
4 Ge H, Zhang  C, Dang H,  Zhu C, Jia  G (2013). Distribution of tetraether lipids in surface sediments of the northern South China Sea: implications for TEX86 proxies. Geoscience Frontiers, 4(2): 223–229
https://doi.org/10.1016/j.gsf.2012.10.002
5 Gliozzi A, Paoli  G , De RosaM ,  GambacortaA (1983). Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, 735(2): 234–242
https://doi.org/10.1016/0005-2736(83)90298-5
6 Hallam S J, Konstantinidis  K T, Putnam  N, Schleper C,  Watanabe Y,  Sugahara J,  Preston C,  de la Torre J,  Richardson P M,  DeLong E F (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA, 103(48): 18296–18301
https://doi.org/10.1073/pnas.0608549103
7 Herndl G J, Reinthaler  T, Teira E,  van Aken H,  Veth C, Pernthaler  A, Pernthaler J (2005). Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol, 71(5): 2303–2309
https://doi.org/10.1128/AEM.71.5.2303-2309.2005
8 Hopmans E C, Weijers  J W H, Schefuß  E, Herfort L,  Sinninghe Damsté J S,  Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1‒2): 107–116
https://doi.org/10.1016/j.epsl.2004.05.012
9 Hu A, Jiao  N, Zhang C (2011). Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea. Microb Ecol, 62(3): 549–563
https://doi.org/10.1007/s00248-011-9866-z
10 Hu J, Kawamura  H, Hong H S,  Qi Y (2000). Review on the currents in the South China Sea seasonal circulation South China Sea warm current and Kuroshio Intrusion. J Oceanogr, 56(6): 607–624
https://doi.org/10.1023/A:1011117531252
11 Huguet C, Hopmans  E C, Febo-Ayala  W, Thompson D H,  Sinninghe Damste' J S,  Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041
https://doi.org/10.1016/j.orggeochem.2006.05.008
12 Jia G, Zhang  J, Chen J,  Peng P, Zhang  C (2012). Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Org Geochem, 50: 68–77
https://doi.org/10.1016/j.orggeochem.2012.07.002
13 Karner M B, DeLong  E F, Karl  D M (2001). Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409(6819): 507–510
https://doi.org/10.1038/35054051
14 Kim J H, Schouten  S, Rodrigo-Gámiz M, Rampen S,  Marino G,  Huguet C,  Helmke P,  Buscai R,  Hopmans E,  Pross J,  Sangiorgi F,  Middelburg J B M,  Sinninghe Damsté J S (2015). Influence of deep-water derived isoprenoid tetraether lipids on the paleothermometer in the Mediterranean Sea. Geochim Cosmochim Acta, 150: 125–141
https://doi.org/10.1016/j.gca.2014.11.017
15 Kim J H, van der Meer  J, Schouten S,  Helmke P,  Willmott V,  Sangiorgi FKoç N, Hopmans  E C, Damsté  J S S (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta, 74(16): 4639–4654
https://doi.org/10.1016/j.gca.2010.05.027
16 Li F Y (1988). Determination of recent sedimentation rates by 210Pb method in the South China Sea. Mark Sci, 3: 64–66
17 Li F Y, Yuan  W (1991). Profile model of 210Pb in the South China Sea, South Huanghai Sea and Bohai Sea. Mar Geol & Quaternary Geol, 11(3): 35–43 (in Chinese)
18 Liu K K, Chao  S Y, Shaw  P T, Gong  G C, Chen  C C, Tang  T Y (2002). Monsoon-forces chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Res Part I Oceanogr Res Pap, 49(8): 1387–1412
https://doi.org/10.1016/S0967-0637(02)00035-3
19 Lü  X, Yang  H, Song J,  Versteegh G J M,  Li X, Yuan  H, Li N,  Yang Y, Ding  W, Xie S (2014). Sources and distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) in sediments from the east coastal sea of China: application of GDGT-based paleothermometry to a shallow marginal sea. Org Geochem, 75: 24–35
https://doi.org/10.1016/j.orggeochem.2014.06.007
20 Murray A E, Blakis  A, Massana R,  Strawzewski S,  Passow U,  Alldredge A,  Delong E F (1999). A time series assessment of planktonic archaealvariability in the Santa Barbara Channel. Aquat Microb Ecol, 20: 129–145
https://doi.org/10.3354/ame020129
21 Ose T, Song  Y K, Kitoh  A (1997). Sea surface temperature in the South China Sea—An index for the Asian monsoon and ENSO system. J Meteorol Soc Jpn, 75: 1091–1107
22 Pernthaler A, Preston  C M, Pernthaler  J, DeLong E F,  Amann R (2002). Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol, 68(2): 661–667
https://doi.org/10.1128/AEM.68.2.661-667.2002
23 Pester M, Schleper  C, Wagner M (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol, 14(3): 300–306
https://doi.org/10.1016/j.mib.2011.04.007
24 Peterse F, Kim  JH, Schouten S,  Kristensen DK,  Koc, N, Sinninghe Damsté  JS(2009). Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry, 40: 692–699
25 Powers L, Werne  J P, Vanderwoude  A J, Sinninghe Damsté  J S, Hopmans  E C, Schouten  S (2010). Applicability and calibration of the TEX86 paleothermometer in lakes. Org Geochem, 41(4): 404–413
https://doi.org/10.1016/j.orggeochem.2009.11.009
26 Qu T D (2001). Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J Geophys Res, 106(C4): 6943–6955
https://doi.org/10.1029/2000JC000479
27 Schouten S, Hopmans  E C, Schefuß  E, Sinninghe Damste J S (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204(1): 265–274
https://doi.org/10.1016/S0012-821X(02)00979-2
28 Schouten S, Huguet  C, Hopmans E C,  Kienhuis M M,  Sinninghe Damste J S (2007). Analytical Methodology for TEX86 Paleothermometry by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal Chem, 79(7): 2940–2944
https://doi.org/10.1021/ac062339v
29 Schouten S, Pitcher  A, Hopmans E C,  Villanueva L,  van Bleijswijk J,  Sinninghe Damsté J S (2012). Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86. Geochim Cosmochim Acta, 98: 228–243
https://doi.org/10.1016/j.gca.2012.05.002
30 Shah S R, Mollenhauer  G, Ohkouchi N,  Eglinton T I,  Pearson A (2008). Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis. Geochim Cosmochim Acta, 72(18): 4577–4594
https://doi.org/10.1016/j.gca.2008.06.021
31 Shen S, Lau  M K (1995). Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J Meteorol Soc Jpn, 73(1): 105–124.
32 Shintani T, Yamamoto  M, Chen M T (2011). Paleoenvironmental changes in the northern South China Sea over the past 28,000 years: a study of TEX86-derived sea surface temperatures and terrestrial biomarkers. Journal of Asian Earth Science, 40(6): 1221–1229
33 Sinninghe Damsté JS,  Ossebaar J,  Abbas B,  Schouten S,  Verschuren D (2009). Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta 73: 4232–4249
34 Taylor K W R,  Huber M,  Hollis C J,  Hernandez-Sanchez M T,  Pancost R D (2013). Re-evaluating modern and Palaeogene GDGT distributions: implications for SST reconstructions. Global Planet Change, 108: 158–174
https://doi.org/10.1016/j.gloplacha.2013.06.011
35 Turich C, Freeman  K H (2011). Archaeal lipids record paleosalinity in hypersaline systems. Org Geochem, 42: 1147–1157
36 Turich C, Freeman  K H, Bruns  M A, Conte  M, Jones A D,  Wakeham S G (2007). Lipids of marine Archaea: patterns and provenance in the water-column and sediments. Geochim Cosmochim Acta, 71(13): 3272–3291 
https://doi.org/10.1016/j.gca.2007.04.013
37 Villanueva L, Schouten  S, Sinninghe Damste′  J S (2014). Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota. Environ Microbiol, 10(17): 3527–3539
38 Walsh E M, Ingalls  A E, Keil  R G (2008). Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver – Washington Margin: a multiproxy approach using d13Corg, lignin phenols, and the ether lipid BIT index. Limnol Oceanogr, 53(3): 1054–1063
https://doi.org/10.4319/lo.2008.53.3.1054
39 Wang J X, Wei  Y L, Wang  P, Hong Y H,  Zhang C L (2015). Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: impact of changing archaeal community composition. Chem Geol, 402: 18–29
https://doi.org/10.1016/j.chemgeo.2015.03.002
40 Weber Y, De Jonge  C, Rijpstra W I C,  Hopmans E C,  Stadnitskaia A,  Schubert C J,  Lehmann M F,  Sinninghe Damsté J S,  Niemann H (2015). Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: evidence for lacustrine branched GDGT production. Geochim Cosmochim Acta, 154: 118–129
https://doi.org/10.1016/j.gca.2015.01.032
41 Wei Y, Wang  J, Liu J,  Dong L, Li  L, Wang H,  Wang P, Zhao  M, Zhang C (2011). Spatial variations in Archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for Paleoclimate studies. Appl Environ Microbiol, 77(21): 7479–7489
https://doi.org/10.1128/AEM.00580-11
42 Weijers J W H,  Schouten S,  van den Donker J C,  Hopmans E C,  Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils Geochim Cosmochim Ac, 71(3): 703–713
43 Wuchter C, Schouten  S (2005). Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry. Paleoceanography, 20: PA3013, 
https://doi.org/10.1029/2004PA001110
44 Wuchter C, Schouten  S, Coolen M J L,  Sinninghe Damsté J S (2004). Temperature dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry.  Paleoceanography, 19, PA4028, 
https://doi.org/10.1029/2004PA001041
45 Xie W, Zhang  C L, Zhou  X D, Wang  P (2014). Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Appl Microbiol Biotechnol, 98(18): 7971–7982
https://doi.org/10.1007/s00253-014-5838-9
46 Yang H, Pancost  R D, Tang  C, Ding W,  Dang X, Xie  S (2014). Distributions of isoprenoid and branched glycerol dialkanol diethers in Chinese surface soils and a loess–paleosol sequence: implications for the degradation of tetraether lipids. Org Geochem, 66: 70–79
https://doi.org/10.1016/j.orggeochem.2013.11.003
47 Zell C, Kim  J-H, Dorhout D,  Baas M, Sinninghe Damsté  J S (2015). Sources and distributions of branched tetraether lipids and crenarchaeol along the Portuguese continental margin: implications for the BIT index. Cont Shelf Res, 96: 34–44
https://doi.org/10.1016/j.csr.2015.01.006
48 Zhang C L, Wang  J X, Wei  Y L, Zhu  C, Huang L Q,  Dong H L (2012). Production of branched tetraether lipids in the lower Pearl River and estuary: effects of extraction methods and impact on bGDGT proxies. Front Microbiol, 2(274): 1–18
49 Zhou H, Hu  J, Spiro B,  Peng P, Tang  J (2014). Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: indicators of sea surface temperature and effects of their sources. Palaeogeogr Palaeoclimatol Palaeoecol, 395: 114–121
https://doi.org/10.1016/j.palaeo.2013.12.006
[1] Chao FU, Xinghe YU, Xue FAN, Yulin HE, Jinqiang LIANG, Shunli LI. Classification of mass-transport complexes and distribution of gashydrate-bearing sediments in the northeastern continental slope of the South China Sea[J]. Front. Earth Sci., 2020, 14(1): 25-36.
[2] Jun WANG, Xiaohong MENG, Zhaoxi CHEN, Fang LI. Interpretation of gravity data for fault distribution near the Mongolia–Hinggan metallogenic belt in the eastern China-Mongolia frontier area[J]. Front. Earth Sci., 2018, 12(4): 808-817.
[3] Yintao LU, Xinghua ZANG, Hong YAO, Shichao ZHANG, Shaobin SUN, Fang LIU. Assessment of trace metal contamination in groundwater in a highly urbanizing area of Shenfu New District, Northeast China[J]. Front. Earth Sci., 2018, 12(3): 569-582.
[4] Jianmin QIAO, Deyong YU, Qianfeng WANG, Yupeng LIU. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China[J]. Front. Earth Sci., 2018, 12(2): 408-419.
[5] Shaolei TANG,Xiaofeng YANG,Di DONG,Ziwei LI. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method[J]. Front. Earth Sci., 2015, 9(4): 722-731.
[6] Yanyun ZHAO,Xiangming HU,Jingtao LIU,Zhaohua LU,Jiangbao XIA,Jiayi TIAN,Junsheng MA. Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta[J]. Front. Earth Sci., 2015, 9(3): 567-577.
[7] Jinjian LI,Xiaojie MENG,Yan ZHANG,Juan LI,Linlin XIA,Hongmei ZHENG. Analysis of the temporal and spatial distribution of water quality in China’s major river basins, and trends between 2005 and 2010[J]. Front. Earth Sci., 2015, 9(3): 463-472.
[8] Jianqi ZHUANG,Jianbing PENG,Javed IQBAL,Tieming LIU,Na LIU,Yazhe LI,Penghui MA. Identification of landslide spatial distribution and susceptibility assessment in relation to topography in the Xi’an Region, Shaanxi Province, China[J]. Front. Earth Sci., 2015, 9(3): 449-462.
[9] Hongxia LIU,Ying HU,Shihua QI,Xinli XING,Yuan ZHANG,Dan YANG,Chengkai QU. Organochlorine pesticide residues in surface water from Sichuan Basin to Aba Prefecture profile, east of the Tibetan Plateau[J]. Front. Earth Sci., 2015, 9(2): 248-258.
[10] Shuyan LIU,Xin-Zhong LIANG,Wei GAO,Thomas J. STOHLGREN. Regional climate model downscaling may improve the prediction of alien plant species distributions[J]. Front. Earth Sci., 2014, 8(4): 457-471.
[11] Fangbing MA,Chunhui LI,Xuan WANG,Zhifeng YANG,Chengchun SUN,Peiyu LIANG. A Bayesian method for comprehensive water quality evaluation of the Danjiangkou Reservoir water source area, for the middle route of the South-to-North Water Diversion Project in China[J]. Front. Earth Sci., 2014, 8(2): 242-250.
[12] Fang YIN, Xiangzheng DENG, Qin JIN, Yongwei YUAN, Chunhong ZHAO. The impacts of climate change and human activities on grassland productivity in Qinghai Province, China[J]. Front Earth Sci, 2014, 8(1): 93-103.
[13] Asma AYARI, Huan YANG, Shucheng XIE. Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China[J]. Front Earth Sci, 2013, 7(3): 384-394.
[14] Jinpeng LI, Shikui DONG, Mingchun PENG, Xiaoyan LI, Shiliang LIU. Vegetation distribution pattern in the dam areas along middle-low reach of Lancang-Mekong River in Yunnan Province, China[J]. Front Earth Sci, 2012, 6(3): 283-290.
[15] Ying HU, Shihua QI, Chenxi WU, Yanping KE, Jing CHEN, Wei CHEN, Xiangyi GONG. Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake, East Central China[J]. Front Earth Sci, 2012, 6(1): 39-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed