Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 722-731    https://doi.org/10.1007/s11707-015-0538-z
RESEARCH ARTICLE
Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method
Shaolei TANG1,2, Xiaofeng YANG1(), Di DONG1,2, Ziwei LI1
1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(2266 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

Keywords sea surface temperature (SST)      Bayesian maximum entropy (BME)      remote sensing      data fusion     
Corresponding Author(s): Xiaofeng YANG   
Just Accepted Date: 20 July 2015   Online First Date: 22 October 2015    Issue Date: 30 October 2015
 Cite this article:   
Shaolei TANG,Xiaofeng YANG,Di DONG, et al. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method[J]. Front. Earth Sci., 2015, 9(4): 722-731.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0538-z
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/722
1 A Alvera-Azcárate, A Barth, M Rixen, J M Beckers (2005). Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the adriatic sea surface temperature. Ocean Model, 9(4): 325–346
https://doi.org/10.1016/j.ocemod.2004.08.001
2 A F Bennett (2002). Inverse Modeling of the Ocean and Atmosphere. London: Cambridge University Press
3 O B Brown, P J Minnett, R Evans, E Kearns, K Kilpatrick, A Kumar, R Sikorski, A Závody (1999). MODIS Infrared Sea Surface Temperature Algorithm- Algorithm Theoretical Basis Document (Version 2.0). University of Miami
4 K S Casey, T B Brandon, P Cornillon, R Evans (2010). Oceanography from Space. Springer Netherlands, 273–287
5 Y Chao, Z Li, J D Farrara, P Hung (2009). Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J Atmos Ocean Technol, 26(7): 1415–1426
https://doi.org/10.1175/2009JTECHO592.1
6 G Christakos, A Kolovos, M L Serre, F Vukovich (2004). Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Trans Geosci Rem Sens, 42(5): 991–1008
https://doi.org/10.1109/TGRS.2003.822751
7 G Christakos, M L Serre (2000). BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ, 34(20): 3393–3406
https://doi.org/10.1016/S1352-2310(00)00080-7
8 G Christakos, M L Serre, J L Kovitz (2001). BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. Journal of Geophysical Research: Atmospheres (1984−2012), 106 (D9): 9717–9731
9 N Cressie (1992). Statistics for Spatial Data. Terra Nova, 4(5): 613–617
https://doi.org/10.1111/j.1365-3121.1992.tb00605.x
10 C J Donlon, M Martin, J Stark, J Roberts-Jones, E Fiedler, W Wimmer (2012). The operational sea surface temperature and sea ice analysis (Ostia) system. Remote Sens Environ, 116(2): 140–158
https://doi.org/10.1016/j.rse.2010.10.017
11 C L Gentemann, C J Donlon, A Stuart-Menteth, F J Wentz (2003). Diurnal signals in satellite sea surface temperature measurements. Geophys Res Lett, 30(3): 1140–1143
https://doi.org/10.1029/2002GL016291
12 C L Gentemann, F J Wentz, C A Mears, D K Smith (2004). In situ validation of tropical rainfall measuring mission microwave sea surface temperatures. Journal of Geophysical Research: Oceans, 109(C4): 249–260
13 L Guan, H Kawamura (2003). SST availabilities of satellite infrared and microwave measurements. J Oceanogr, 59(2): 201–209
https://doi.org/10.1023/A:1025543305658
14 J Isern-Fontanet, B Chapron, G Lapeyre, P Klein (2006). Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys Res Lett, 33(24): L24608
https://doi.org/10.1029/2006GL027801
15 Y Kawai, H Kawamura, S Takahashi, K Hosoda, H Murakami, M Kachi, L Guan (2006). Satellite-based high-resolution global optimum interpolation sea surface temperature data. Journal of Geophysical Research: Oceans (1978−2012), 111(C6): 285–293
16 S L Lee, R Balling, P Gober (2008). Bayesian maximum entropy mapping and the soft data problem in urban climate research. Ann Assoc Am Geogr, 98(2): 309–322
https://doi.org/10.1080/00045600701851184
17 A Li, Y Bo, L Chen (2013a). Bayesian maximum entropy data fusion of field-observed leaf area index (LAI) and Landsat Enhanced Thematic Mapper Plus-derived LAI. Int J Remote Sens, 34(1): 227–246
https://doi.org/10.1080/01431161.2012.712234
18 A Li, Y Bo, Y Zhu, P Guo, J Bi, Y He (2013b). Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sens Environ, 135(4): 52–63
https://doi.org/10.1016/j.rse.2013.03.021
19 X Li, W Pichel, N P Clemente-Colon, V Krasnopolsky, J Sapper (2001a). Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. International Journal of Remote Sensing, 22(7): 1285–1303
20 X Li, W Pichel, E Maturi, P Clemente-Colon, J Sapper (2001b). Deriving the operational nonlinear multi-channel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. International Journal of Remote Sensing, 22(4): 699–704
21 X Li, Q Zheng, W G Pichel, X Yan, W Timothy Liu, P Clemente-Colon (2001c). Analysis of coastal lee waves along the coast of Texas observed in advanced very high resolution radiometer Images. J Geophys Res, 106(C4): 7017–7025
https://doi.org/10.1029/1999JC000019
22 A C Lorenc (1986). Analysis methods for numerical weather prediction. Q J R Meteorol Soc, 112(474): 1177–1194
https://doi.org/10.1002/qj.49711247414
23 R W Reynolds, T M Smith (1994). Improved global sea surface temperature analyses using optimum interpolation. J Clim, 7(6): 929–948
https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
24 R W Reynolds, H Zhang, T M Smith, C L Gentemann, F Wentz (2005). Impacts of in situ and additional satellite data on the accuracy of a sea-surface temperature analysis for climate. Int J Climatol, 25(7): 857–864
https://doi.org/10.1002/joc.1168
25 F Sakaida, S Takahashi, T Shimada, Y Kawai, H Kawamura, K Hosoda, L Guan (2005). The production of the new generation sea surface temperature (NGSST-O ver. 1.0) in Tohoku University. Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. IEEE, 2005: 2602–2605
26 T M Smith, R W Reynolds (2003). Extended reconstruction of global sea surface temperatures based on COADS data (1854−1997). J Clim, 16(10): 1495–1510
https://doi.org/10.1175/1520-0442-16.10.1495
27 L Spadavecchia, M Williams (2009). Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric Meteorol, 149(6−7): 1105–1117
https://doi.org/10.1016/j.agrformet.2009.01.008
28 P Tandeo, B Chapron, S Ba, E Autret, R Fablet (2014). Segmentation of mesoscale ocean surface dynamics using satellite SST and SSH observations. IEEE Trans Geosci Rem Sens, 52(7): 4227–4235
https://doi.org/10.1109/TGRS.2013.2280494
29 W Wang, P Xie (2007). A multiplatform-merged (MPM) SST analysis. J Clim, 20(9): 1662–1679
https://doi.org/10.1175/JCLI4097.1
30 F J Wentz, T Meissner (2000). AMSR Ocean Algorithm Theoretical Basis Document, Version 2. Remote Sensing Systems, Santa Rosa, CA
31 M Yamamoto, N Hirose (2007). Impact of SST reanalyzed using OGCM on weather simulation: a case of a developing cyclone in the Japan Sea area. Geophys Res Lett, 34(5): L05808
https://doi.org/10.1029/2006GL028386
32 H L Yu, A Kolovos, G Christakos, J Chen, S Warmerdam, B Dev (2007). Interactive spatiotemporal modeling of health systems: the SEKS–GUI framework. Stochastic Environ Res Risk Assess, 21(5): 555–572
https://doi.org/10.1007/s00477-007-0135-0
33 X Zhou, X Yang, L Cheng, Z Li (2012). Sensitivity analysis and validation of the single channel physical method for retrieving sea surface temperature. Journal of infrared and millimeter waves, 31(1): 91–96
[1] Sijun ZHENG, Chen MENG, Jianhui XUE, Yongbo WU, Jing LIANG, Liang XIN, Lang ZHANG. UAV-based spatial pattern of three-dimensional green volume and its influencing factors in Lingang New City in Shanghai, China[J]. Front. Earth Sci., 2021, 15(3): 543-552.
[2] Herrieth MACHIWA, Bo TIAN, Dhritiraj SENGUPTA, Qian CHEN, Michael MEADOWS, Yunxuan ZHOU. Vegetation dynamics in response to human and climatic factors in the Tanzanian Coast[J]. Front. Earth Sci., 2021, 15(3): 595-605.
[3] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[4] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[5] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[6] Tianjie LEI, Jie FENG, Cuiying ZHENG, Shuguang LI, Yang WANG, Zhitao WU, Jingxuan LU, Guangyuan KAN, Changliang SHAO, Jinsheng JIA, Hui CHENG. Review of drought impacts on carbon cycling in grassland ecosystems[J]. Front. Earth Sci., 2020, 14(2): 462-478.
[7] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[8] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[9] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[10] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[11] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[12] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[13] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[14] Zheng WANG, Zhihua MAO, Junshi XIA, Peijun DU, Liangliang SHI, Haiqing HUANG, Tianyu WANG, Fang GONG, Qiankun ZHU. Data fusion in data scarce areas using a back-propagation artificial neural network model: a case study of the South China Sea[J]. Front. Earth Sci., 2018, 12(2): 280-298.
[15] Zhen LI, Jinghu PAN. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012[J]. Front. Earth Sci., 2018, 12(1): 108-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed