Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (2) : 413-429    https://doi.org/10.1007/s11707-019-0780-x
RESEARCH ARTICLE
Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison
Jianhong LIU1,2,3(), Clement ATZBERGER3, Xin HUANG1,2, Kejian SHEN4,5, Yongmei LIU1,2, Lei WANG1,2
1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
2. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
3. Institute of Surveying, Remote Sensing and Land Information, University of Natural Resources and Life Sciences (BOKU), Peter Jordan Straße 82, Vienna 1190, Austria
4. Remote Sensing Center for Agriculture and Animal Husbandry of Qinghai, Xining 810007, China
5. Chinese Academy of Agricultural Engineering Planning and Design, Beijing 100125, China
 Download: PDF(4383 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Qinghai Province is one of the four largest pastoral regions in China. Timely monitoring of grass growth and accurate estimation of grass yields are essential for its ecological protection and sustainable development. To estimate grass yields in Qinghai, we used the normalized difference vegetation index (NDVI) time-series data derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) and a pre-existing grassland type map. We developed five estimation approaches to quantify the overall accuracy by combining four data pre-processing techniques (original, Savitzky-Golay (SG), Asymmetry Gaussian (AG) and Double Logistic (DL)), three metrics derived from NDVI time series (VImax, VIseason and VImean) and four fitting functions (linear, second-degree polynomial, power function, and exponential function). The five approaches were investigated in terms of overall accuracy based on 556 ground survey samples in 2016. After assessment and evaluation, we applied the best estimation model in each approach to map the fresh grass yields over the entire Qinghai Province in 2016. Results indicated that: 1) For sample estimation, the cross-validated overall accuracies increased with the increasing flexibility in the chosen fitting variables, and the best estimation accuracy was obtained by the so called “fully flexible model” with R2 of 0.57 and RMSE of 1140 kg/ha. 2) Exponential models generally outperformed linear and power models. 3) Although overall similar, strong local discrepancies were identified between the grass yield maps derived from the five approaches. In particular, the two most flexible modeling approaches were too sensitive to errors in the pre-existing grassland type map. This led to locally strong overestimations in the modeled grass yields.

Keywords Qinghai Province      grass yield      remote sensing      MODIS      vegetation index     
Corresponding Author(s): Jianhong LIU   
Online First Date: 17 January 2020    Issue Date: 21 July 2020
 Cite this article:   
Jianhong LIU,Clement ATZBERGER,Xin HUANG, et al. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0780-x
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I2/413
1 I Ali, F Cawkwell, E Dwyer, B Barrett, S Green (2016). Satellite remote sensing of grasslands: from observation to management. J Plant Ecol, 9(6): 649–671
https://doi.org/10.1093/jpe/rtw005
2 P M Atkinson, C Jeganathan, J Dash, C Atzberger (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens Environ, 123: 400–417
https://doi.org/10.1016/j.rse.2012.04.001
3 C Atzberger, R Darvishzadeh, M Immitzer, M Schlerf, A Skidmore, G le Maire (2015). Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int J Appl Earth Obs, 43: 19–31
https://doi.org/10.1016/j.jag.2015.01.009
4 F Baret, S Buis (2008). Estimating canopy characteristics from remote sensing observations: review of methods and associated problems., Advances in Land Remote Sensing: Springer, 173–201
5 F Baret, G Guyot (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ, 35(2–3): 161–173
https://doi.org/10.1016/0034-4257(91)90009-U
6 F Baret, G Guyot, D J Major (1989). Crop biomass evaluation using radiometric measurements. Photogrammetria, 43(5): 241–256
https://doi.org/10.1016/0031-8663(89)90001-X
7 P S A Beck, C Atzberger, K A Høgda, B Johansen, A K Skidmore (2006). Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ, 100(3): 321–334
https://doi.org/10.1016/j.rse.2005.10.021
8 H Chen, Q Zhu, C Peng, N Wu, Y Wang, X Fang, Y Gao, D Zhu, G Yang, J Tian, X Kang, S Piao, H Ouyang, W Xiang, Z Luo, H Jiang, X Song, Y Zhang, G Yu, X Zhao, P Gong, T Yao, J Wu (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol, 19(10): 2940–2955
https://doi.org/10.1111/gcb.12277 pmid: 23744573
9 J Chen, P Jönsson, M Tamura, Z Gu, B Matsushita, L Eklundh (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ, 91(3–4): 332–344
https://doi.org/10.1016/j.rse.2004.03.014
10 R Darvishzadeh, C Atzberger, A Skidmore, M Schlerf (2011). Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models. Isprs J Phtogramm, 66(6): 894–906
https://doi.org/10.1016/j.isprsjprs.2011.09.013
11 R Darvishzadeh, A Skidmore, M Schlerf, C Atzberger (2008). Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens Environ, 112(5): 2592–2604
https://doi.org/10.1016/j.rse.2007.12.003
12 M J de Smith, M F Goodchild, P A Longley (2018). Geospatial Analysis: A Comprehensive Guide (Sixth edition): Winchelsea Press Department of Agriculture, Animal Husbandry and Veterinary of the People’s Republic of China, General Animal Husbandry and Veterinary Station of China (1996). China Grassland Resources. Beijing: China Science and Technology Press
13 M Duan, Q Gao, Y Wan, Y Li, Y Guo, Z Ganzhu, Y Liu, X Qin (2012). Biomass estimation of alpine grasslands under different grazing intensities using spectral vegetation indices. Can J Remote Sens, 37(4): 413–421
https://doi.org/10.5589/m11-050
14 Q Feng, X Gao, X Huang, H Yu, T Liang (2011). Remote sensing dynamic monitoring of grass growth in Qinghai-Tibet Plateau from 2001 to 2010. J Lanzhou U, 47(4): 75–81
15 X Fu, C Tang, X Zhang, X Zhang, S Zhou, Y Huang, D Jiang (2013). Estimation of grass yield based on MODIS data in Sichuan Province, China. J Earth Inform Sci, 15(4): 611–617
https://doi.org/10.3724/SP.J.1047.2013.00611
16 F Gao, J T Morisette, R E Wolfe, G Ederer, J Pedelty, E Masuoka, R Myneni, B Tan, J Nightingale (2008). An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci Remote S, 5(1): 60–64
https://doi.org/10.1109/LGRS.2007.907971
17 M Haase, C Rösch, D Ketzer (2016). GIS-based assessment of sustainable crop residue potentials in European regions. Biomass Bioenerg, 86: 156–171
https://doi.org/10.1016/j.biombioe.2016.01.020
18 J N Hird, G J McDermid (2009). Noise reduction of NDVI time series: an empirical comparison of selected techniques. Remote Sens Environ, 113(1): 248–258
https://doi.org/10.1016/j.rse.2008.09.003
19 A Huete, K Didan, T Miura, E P Rodriguez, X Gao, L G Ferreira (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1–2): 195–213
https://doi.org/10.1016/S0034-4257(02)00096-2
20 G F Jenks, F C Caspall (1971). Error on choroplethic maps: definition, measurement, reduction. Ann Assoc Am Geogr, 61(2): 217–244
https://doi.org/10.1111/j.1467-8306.1971.tb00779.x
21 P Jönsson, L Eklundh (2002). Seasonality extraction by function-fitting to time series of satellite sensor data. IEEE T Geosci Remote, 40(8): 1824–1832
https://doi.org/10.1109/TGRS.2002.802519
22 C F Jordan (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4): 663–666
https://doi.org/10.2307/1936256
23 D Ketzer, C Rösch, M Haase (2017). Assessment of sustainable Grassland biomass potentials for energy supply in Northwest Europe. Biomass Bioenerg, 100: 39–51
https://doi.org/10.1016/j.biombioe.2017.03.009
24 A Klisch, C Atzberger (2016). Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sens (Basel), 8(4): 267
https://doi.org/10.3390/rs8040267
25 J Li, T Liang, Q Chen (1998). Estimating grassland yields using remote sensing and GIS technologies in China. New Zeal J Agr Res, 41(1): 31–38
https://doi.org/10.1080/00288233.1998.9513285
26 X Li, M Li, S Dong, J Shi (2015). Temporal-spatial changes in ecosystem services and implications for the conservation of alpine rangelands on the Qinghai-Tibetan Plateau. Rangeland J, 37(1): 31–43
https://doi.org/10.1071/RJ14084
27 D B Lobell, G P Asner (2004). Cropland distributions from temporal unmixing of MODIS data. Remote Sens Environ, 93(3): 412–422
https://doi.org/10.1016/j.rse.2004.08.002
28 A Mohammat, X Wang, X Xu, L Peng, Y Yang, X Zhang, R B Myneni, S Piao (2013). Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agr Forest Meteorol, 178–179: 21–30
https://doi.org/10.1016/j.agrformet.2012.09.014
29 R L Pearson, L D Miller (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens Environ, VIII: 7–12
30 S Piao, J Fang, L Zhou, K Tan, S Tao (2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem Cy, 21(2)
https://doi.org/10.1029/2005GB002634
31 S Piao, A Mohammat, J Fang, Q Cai, J Feng (2006). NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob Environ Change, 16(4): 340–348
https://doi.org/10.1016/j.gloenvcha.2006.02.002
32 J E Pinzon, C J Tucker (2010). GIMMS 3g NDVI set and global NDVI trends. In: Second Yamal Land-Cover Land-Use Change Workshop. Finland: Rovaniemi, 8–10
33 J Qi, A Chehbouni, A R Huete, Y H Kerr, S Sorooshian (1994). A modified soil adjusted vegetation index. Remote Sens Envrion, 48(2): 119–126
https://doi.org/10.1016/0034-4257(94)90134-1
34 Qinghai Provincial Grassland Station (2012). Qinghai Grassland Resources. Xining: Qinghai People’s Publishing House
35 F Rembold, C Atzberger, I Savin, O Rojas (2013). Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens (Basel), 5(4): 1704–1733
https://doi.org/10.3390/rs5041704
36 J Ren, Z Chen, Q Zhou, H Tang (2008). Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int J Appl Earth Obs, 10(4): 403–413
https://doi.org/10.1016/j.jag.2007.11.003
37 O Rojas (2007). Operational maize yield model development and validation based on remote sensing and agro-meteorological data in Kenya. Int J Remote Sens, 28(17): 3775–3793
https://doi.org/10.1080/01431160601075608
38 G Rondeaux, M Steven, F Baret (1996). Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 55(2): 95–107
https://doi.org/10.1016/0034-4257(95)00186-7
39 J L Roujean, F M Breon (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ, 51(3): 375–384
https://doi.org/10.1016/0034-4257(94)00114-3
40 G M Rusch, P C Zapata, F Casanoves, P Casals, M Ibrahim, F DeClerck (2014). Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America. Agroforest Syst, 88(3): 517–526
https://doi.org/10.1007/s10457-014-9711-8
41 A Schucknecht, M Meroni, F Kayitakire, A Boureima (2017). Phenology-based biomass estimation to support rangeland management in semi-arid environments. Remote Sens (Basel), 9(5): 463
https://doi.org/10.3390/rs9050463
42 A N Spiess, N Neumeyer (2010). An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. BMC Pharmacol, 10(1): 6
https://doi.org/10.1186/1471-2210-10-6 pmid: 20529254
43 J W Tukey (1977). Exploratory Data Analysis. New York: Pearson
44 E F Vermote, J C Roger, J P Ray (2015). MODIS Surface Reflectance User’s Guide-Collection 6
45 C D Wehlage, A J Gamon, D Thayer, V D Hildebrand (2016). Interannual variability in dry mixed-grass prairie yield: a comparison of MODIS, SPOT, and field measurements. Remote Sens (Basel), 8(10): 872
https://doi.org/10.3390/rs8100872
46 B Xu, X C Yang, W G Tao, Z H Qin, H Q Liu, J M Miao, Y Y Bi (2008). MODIS-based remote sensing monitoring of grass production in China. Int J Remote Sens, 29(17–18): 5313–5327
https://doi.org/10.1080/01431160802036276
47 J Xue, B Su (2017). Significant Remote sensing vegetation indices: a review of developments and applications. J Sensors, 2017(1353691): 1–17
https://doi.org/10.1155/2017/1353691
48 Q Xun, Y Dong, S An, K Yan (2018). Monitoring of grassland herbage accumulation by remote sensing using MOD09 GA data in Xinjiang. Acta Pratacult Sin, 27(4): 10–26
49 S Yang, W Zhang, Q Feng, B Meng, J Gao, T Liang (2016). Monitoring of grassland herbage accumulation by remote sensing using MODIS daily surface reflectance data in the Qingnan Region. Acta Pratacult Sin, 25(8): 14–26
50 F Yin, X Deng, Q Jin, Y Yuan, C Zhao (2014). The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front Earth Sci-PRC, 8(1): 93–103
https://doi.org/10.1007/s11707-013-0390-y
51 L Yu, L Zhou, W Liu, H Zhou (2010). Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog prefecture, China. Pedosphere, 20(3): 342–351
https://doi.org/10.1016/S1002-0160(10)60023-9
52 F Zhang, H Wang, Y Zhu, Z Zhang, X Li (2017). Study on the aboveground biomass of natural grassland and balance between forage and livestock in Qilian County. J Nat Resour, 7(32): 1183–1192
53 L M Zhou, C J Tucker, R K Kaufmann, D Slayback, N V Shabanov, R B Myneni (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res-Atmos, 106(D17), 20069–20083
[1] Herrieth MACHIWA, Bo TIAN, Dhritiraj SENGUPTA, Qian CHEN, Michael MEADOWS, Yunxuan ZHOU. Vegetation dynamics in response to human and climatic factors in the Tanzanian Coast[J]. Front. Earth Sci., 2021, 15(3): 595-605.
[2] Sijun ZHENG, Chen MENG, Jianhui XUE, Yongbo WU, Jing LIANG, Liang XIN, Lang ZHANG. UAV-based spatial pattern of three-dimensional green volume and its influencing factors in Lingang New City in Shanghai, China[J]. Front. Earth Sci., 2021, 15(3): 543-552.
[3] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[4] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[5] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[6] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[7] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[8] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[9] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[10] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[11] Jianhong LIU, Le LI, Xin HUANG, Yongmei LIU, Tongsheng LI. Mapping paddy rice in Jiangsu Province, China, based on phenological parameters and a decision tree model[J]. Front. Earth Sci., 2019, 13(1): 111-123.
[12] Xiaojuan HUANG, Mingguo MA, Xufeng WANG, Xuguang TANG, Hong YANG. The uncertainty analysis of the MODIS GPP product in global maize croplands[J]. Front. Earth Sci., 2018, 12(4): 739-749.
[13] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[14] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[15] Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta[J]. Front. Earth Sci., 2018, 12(2): 444-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed