Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (4) : 711-727    https://doi.org/10.1007/s11707-018-0720-1
RESEARCH ARTICLE
Uncertainty in satellite remote sensing of snow fraction for water resources management
Igor Appel()
TAG LLC, Washington, District of Columbia, 20024, USA
 Download: PDF(1001 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Snow fraction is an important component of land surface models and hydrologic models. Information on snow fraction also improves downstream products retrieved from remote sensing: vertical atmosphere profiles, soil moisture, heat fluxes, etc. The uncertainty of the fractional snow cover estimates must be determined, quantified, and reported to consider the suitability of the product for modeling, data assimilation and other applications. The reflectances of snow and non-snow are characterized by a very significant local variability and also by changes from one scene to another. The local snow and non-snow endmembers are approximated by the Normalized Difference Snow Index with a high accuracy. The magnitudes of snow and non-snow Normalized Difference Snow Indexes are scene-specific and calculated on the fly to retrieve snow fraction. The development of the Normalized Difference Snow Index based algorithms to estimate snow fraction including a scene-specific approach taking local snow and non-snow properties into account is considered an optimal way to fractional snow retrieval from moderate resolution optical remote sensing observations. The Landsat reference data are used to estimate the performance of the fractional snow cover algorithms at moderate resolution and to compare the quality of alternative algorithms. The validation results demonstrate that the performance of the algorithms using Normalized Difference Snow Index has advantages. The advantages achieved in snow fraction retrieval lead to improved estimate of snow water equivalent and changes in snow cover state contributing to better modeling of land surface and hydrologic regime. The success of managing water resources on the whole depends on coordinating described investigations with the works of other researchers developing further enhanced models.

Keywords algorithm      remote sensing      uncertainty      validation      snow cover      fraction     
Corresponding Author(s): Igor Appel   
Just Accepted Date: 19 June 2018   Online First Date: 31 July 2018    Issue Date: 20 November 2018
 Cite this article:   
Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0720-1
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I4/711
Sensor Band Wavelength range/mm Central wavelength/mm Sub-satellite FOVa)/km
MODIS 4 0.545?0.565 0.555 0.50
6 1.628?1.652 1.64 0.50
VIIRS I1 0.60?0.68 0.64 0.375
I3 1.58?1.64 1.61 0.375
Tab.1  Snow fraction sensor input for MODIS and VIIRS
Fig.1  Wavelength locations of the MODIS and VIIRS bands. Bands used in the NDSI calculations are labeled with band number.
Fig.2  Two dimensional probability density of pixels in spectral space defined by visible (X axis) and near-infrared (Y axis) reflectances (%).
Fig.3  The most probable snow (asterisks) and non-snow (squares) VIIRS reflectances for 16 scenes under consideration.
Fig.4  Example of NDSI probability density function.
Fig.5  Landsat binary snow cover classification.
Region Mean snow cover Version of model Mean absolute error RMS error Correlation coefficient
Alaska (A) 0.73 R+L 0.04 0.09 0.98
Russia (R) 0.56 A+L 0.08 0.13 0.97
Labrador (L) 0.64 A+R 0.06 0.11 0.96
Tab.2  Performance of averaged relationship for two regions tested on a third region
Region Mean snow cover RMS error Correlation coefficient Regression on ground truth
Kuparuk 0.41 0.13 0.89 ?0.02+ 1.05*GT
South America 0.18 0.11 0.93 0.01+ 1.12*GT
Tab.3  Testing “universal” relationship for Terra for independent scenes
Region Mean snow cover RMS error Correlation coefficient Regression on ground truth
Idaho 0.18 0.07 0.96 0.01+ 1.00*GT
0.10 0.92 0.02+ 0.99*GT
Sierra 1 0.05 0.04 0.96 0.00+ 1.02*GT
0.07 0.88 0.01+ 0.84*GT
Sierra 2 0.09 0.05 0.96 0.00+ 1.00*GT
0.09 0.88 ?0.01+ 0.85*GT
Tab.4  Testing “universal” relationship for Terra (first lines) for independent Terra scenes and “universal” relationship for Aqua (second lines) for independent Aqua scenes
Fig.6  Aggregated and co-registered fraction data at 0.05° cells of a latitude/longitude grid. (a) Landsat fraction; (b) VIIRS fraction.
Date Path Row Corr. coeff. Intercept Slope Mean
true
Mean VIIRS
33 123 32 0.87 −0.09 1.02 0.20 0.11
33 139 29 0.95 −0.03 0.97 0.40 0.36
33 139 30 0.95 −0.07 1.06 0.61 0.57
33 139 31 0.97 −0.01 1.00 0.20 0.19
34 41 33 0.98 −0.01 0.92 0.20 0.18
34 41 34 0.96 −0.01 1.02 0.07 0.06
34 146 29 0.94 −0.03 1.06 0.68 0.68
35 137 29 0.95 −0.03 1.00 0.52 0.49
35 137 30 0.96 0.01 0.94 0.35 0.34
35 153 39 0.78 −0.01 0.65 0.05 0.02
36 128 30 0.90 0.08 0.93 0.92 0.94
37 30 28 0.94 0.24 0.78 0.80 0.87
39 44 27 0.95 −0.01 1.04 0.19 0.18
39 44 31 0.91 0.03 1.07 0.22 0.26
40 156 35 0.96 −0.01 1.06 0.09 0.09
40 156 37 0.94 −0.05 1.18 0.27 0.26
Tab.5  Statistics of VIIRS snow fraction validation
Fig.7  Stratified quantitative assessment of NDSI-based algorithm performance.
Region Method Mean snow cover Mean absolute error RMS error Correlation coefficient
Kuparuk Barton 0.33 0.14 0.19 0.93
Kaufman 0.36 0.11 0.15 0.93
NDSI 0.41 0.08 0.12 0.95
South America Barton 0.18 0.10 0.13 0.95
Kaufman 0.22 0.07 0.10 0.96
NDSI 0.21 0.04 0.10 0.97
Tab.6  Comparison of results provided by the NDSI-based algorithm with the methods proposed by Barton and Kaufman for independent validation
Fig.8  Linear regressions of snow fraction on visible reflectance (a) and on NDSI (b).
Fig.9  Standard deviation (σ) for snow fraction regression on visible reflectance vs. standard deviation (σ) for regression on NDSI.
Fig.10  The errors in the MODIS subpixel snow fraction estimates. Thick line denotes a five-point running mean, gray line is a polynomial approximation.
1 Anderson E A (1973). National weather service river forecast system: snow accumulation and ablation model. NOAA technical memorandum NWS-HYDRO-17, 217
2 Andreadis K M, Lettenmaier D P (2006). Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv Water Resour, 29(6): 872–886
https://doi.org/10.1016/j.advwatres.2005.08.004
3 Appel I (2011a). Improvement of the NPP VIIRS fractional snow cover EDR for creation of a climate data records using MODIS and VIIRS. In: Halounova L, ed. Remote Sensing and Geoinformation not only for Scientific Cooperation. Prague: European Association of Remote Sensing Laboratories Symposium (EARSeL), 182–190
4 Appel I (2011b). Snow cover: advanced VIIRS observing and modeling. In: The Arctic: New Frontier for Global Science. Seoul: Arctic Science Summit Week. Korea Polar Research Institute
5 Appel I (2012). Validation and potential improvements of the NPP fractional snow cover product using high resolution satellite observations. In: Cornet Y, Binard M, Ledant M, Van der Kwast H, eds. Mykonos: 32nd EARSeL Symposium, 17
6 Appel I (2014). Retrieval and validation of VIIRS snow cover information for terrestrial water cycle applications. In: Lakshmi V, Ed. Remote Sensing of the Terrestrial Water Cycle. Washington: Wiley, 175–198
7 Appel I (2015a). Scene-specific fractional snow cover algorithms for optical remote sensing. In: Nagler T, ed. 2nd International Satellite Snow Product Intercomparison Workshop. Boulder: ENVEO, 8–11
8 Appel I (2015b). Optimal linear relationships of fractional snow cover with visible reflectance and NDSI. In: Nagler T, ed. 2nd International Satellite Snow Product Intercomparison Workshop. Boulder: ENVEO, 16–19
9 Appel I (2015c). Estimating fractional snow cover algorithms using exclusively Landsat observations. In: National Institute of Polar Research, Sixth Symposium on Polar Science. Tokyo: NIPR, 28
10 Bamzai A S, Shukla J (1999). Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim, 12(10): 3117–3132
https://doi.org/10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2
11 Barton J S, Hall D K, Riggs G A (2001). Remote sensing of fractional snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) data. In: Hall D K, ed. Proceedings of the 57th Eastern Snow Conference. Syracuse, NY, 171–183
12 Bavera D, De Michele C (2009). Snow water equivalent estimation in the Mallero basin using snow gauge data and MODIS images and fieldwork validation. Hydrological Processes, 23, 1961–1972: 1331–1343
13 Clark P, Slater A G, Barrett A P, Hay L E, McCabe G J, Rajagopalan B, Leavesley G H (2006). Assimilation of snow covered area information into hydrologic and land-surface models. Adv Water Resour, 29(8): 1209–1221
https://doi.org/10.1016/j.advwatres.2005.10.001
14 Cohen J, Entekhabi D (2001). The influence of snow cover on Northern Hemisphere climate variability. Atmos-ocean, 39(1): 35–53
https://doi.org/10.1080/07055900.2001.9649665
15 Crane R G, Anderson M (1984). Satellite discrimination of snow/cloud surfaces. Int J Remote Sens, 5(1): 213–223
https://doi.org/10.1080/01431168408948799
16 Delbart N, Dunesme S, Lavie E, Madelin M, Goma R (2015). Remote sensing of Andean mountain snow cover to forecast water discharge of Cuyo rivers. Journal of Alpine Research, 103-2
17 Delworth T L, Manabe S (1988). The influence of potential evaporation on variabilities of simulated soil wetness and climate. J Clim, 1(5): 523–547
https://doi.org/10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2
18 Déry S J, Salomonson V V, Stieglitz M, Hall D K, Appel I (2005a). An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modeling in Alaska. Hydrol Processes, 19(14): 2755–2774
https://doi.org/10.1002/hyp.5784
19 Déry S J, Sheffield J, Wood E F (2005b). Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge. Journal of Geophysical Research: Atmosphere, 110: D23106
20 Dong J, Peters-Lidard C (2010). On the relationship between temperature and MODIS snow cover retrieval errors in the western US. IEEE Journal of Selected Topics in Earth Observations and Remote Sensing, 3(1): 132–140
https://doi.org/10.1109/JSTARS.2009.2039698
21 Dong J, Walker J P, Houser P R (2005). Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens Environ, 97(1): 68–82
https://doi.org/10.1016/j.rse.2005.04.010
22 Dozier J (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens Environ, 28: 9–22
https://doi.org/10.1016/0034-4257(89)90101-6
23 Elguindi N, Hanson B, Leathers D (2005). The effects of snow cover on midlatitude cyclones in the Great Plains. J Hydrometeorol, 6(3): 263–279
https://doi.org/10.1175/JHM415.1
24 Ellis A W, Leathers D J (1999). Analysis of cold airmass temperature modification across the U.S. Great Plains as a consequence of snow depth and albedo. J Appl Meteorol, 38(6): 696–711
https://doi.org/10.1175/1520-0450(1999)038<0696:AOCATM>2.0.CO;2
25 Foster J L, Sun C, Walker J P, Kelly R, Chang A, Dong J, Powell H (2005). Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ, 94(2): 187–203
https://doi.org/10.1016/j.rse.2004.09.012
26 Gong G, Entekhabi D, Cohen J (2003). Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J Clim, 16(23): 3917–3931
https://doi.org/10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2
27 Hall D K, Riggs G A, Salomonson V V (1995). Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ, 54(2): 127–140
https://doi.org/10.1016/0034-4257(95)00137-P
28 Kaufman Y J, Kleidman R G, Hall D K, Martins J V, Barton J S (2002). Remote sensing of subpixel snow cover using 0.66 and 2.1 μm channels. Geophysical Research Letters, 29(16): 28-1–28-4
29 Key J, Mahoney R, Liu Y, Romanov P, Tschudi M, Appel I, Maslanik J, Baldwin D, Wang X, Meade P (2013). Snow and ice products from Suomi NPP VIIRS. J Geophys Res Atmos, 118(23): 12816–12830
https://doi.org/10.1002/2013JD020459
30 Klein A G, Hall D K, Riggs G A (1998). Improving snow-cover mapping in forests through the use of a canopy reflectance model. Hydrol Processes, 12(10‒11): 1723–1744
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2
31 Kolberg S A, Gottschalk L (2006). Updating of snow depletion curve with remote sensing data. Hydrol Processes, 20(11): 2363–2380
https://doi.org/10.1002/hyp.6060
32 Kumar S V, Peters-Lidard C D, Arsenault K R, Getirana A, Mocko D, Liu Y (2015). Quantifying the added value of snow cover area observations in passive microwave snow depth data assimilation. J Hydrometeorol, 16(4): 1736–1741
https://doi.org/10.1175/JHM-D-15-0021.1
33 Liston G E, Pielke R A Sr, Greene E M (1999). Improving first-order snow-related deficiencies in a regional climate model. J Geophys Res Atmos, 104(D16): 19559–19567
https://doi.org/10.1029/1999JD900055
34 Nagler T (2016). Snow product intercomparison and validation report. European Space Agency. Innsbruck: ENVEO, 123
35 Nolin A W, Dozier J, Mertes L A K (1993). Mapping alpine snow using a spectral mixture modeling technique. Ann Glaciol, 17: 121–124
https://doi.org/10.1017/S0260305500012702
36 Painter T N, Dozier J, Roberts D A, Davis R E, Green R O (2003). Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens Environ, 85(1): 64–77
https://doi.org/10.1016/S0034-4257(02)00187-6
37 Parajka J, Bloschl G (2006). Validation of MODIS snow cover images over Austria. Hydrol Earth Syst Sci, 10(5): 679–689
https://doi.org/10.5194/hess-10-679-2006
38 Pulliainen J, Lemmetyinen J, Kontu A, Arslan A, Wiesmann A, Nagler T, Rott H, Davidson M, Schuettemeyer D, Kern M (2010). Observing seasonal snow changes in the boreal forest area using active and passive microwave measurements. In: Geoscience and Remote Sensing Symposium. Honolulu: IGARSS 2010, 2375–2378
39 Reichle R H, McLaughlin D B, Entekhabi D (2002). Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev, 130(1): 103–114 doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
40 Rodell M, Houser P R (2004). Updating a land surface model with MODIS-derived snow cover. J Hydrometeorol, 5(6): 1064–1075
https://doi.org/10.1175/JHM-395.1
41 Rodell M, Houser P R, Jambor U, Gottschalck J, Mitchell K, Meng C J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D, Toll D (2004). The global land data assimilation system. Bull Am Meteorol Soc, 85(3): 381–394
https://doi.org/10.1175/BAMS-85-3-381
42 Rosenthal W, Dozier J (1996). Automated mapping of mountain snow cover at subpixel resolution from the Landsat Thematic Mapper. Water Resour Res, 32(1): 115–130
https://doi.org/10.1029/95WR02718
43 Roy A, Royer A, Turcotte R (2010). Improvement of springtime streamflow simulations in a boreal environment by incorporating snow-covered area derived from remote sensing data. J Hydrol (Amst), 390(1‒2): 35–44
https://doi.org/10.1016/j.jhydrol.2010.06.027
44 Salamon P, Feyen L (2009). Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. J Hydrol (Amst), 376(3‒4): 428–442
https://doi.org/10.1016/j.jhydrol.2009.07.051
45 Salomonson V V, Appel I (2004). Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens Environ, 89(3): 351–360
https://doi.org/10.1016/j.rse.2003.10.016
46 Salomonson V V, Appel I (2006). Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans Geosci Remote Sens, 44(7): 1747–1756
https://doi.org/10.1109/TGRS.2006.876029
47 Saloranta T, Melvold K, Moen K, Repp K (2015). Combining modelling and satellite observations to estimate seasonal snow water equivalent in high-mountain regions. In: Shea J, Magnusson M M, eds. Iternational Glaciological Society Symposium on Glaciology in High-Mountain Asia.Kathmandu: ICIMOD
48 Savooskul O, Smakhtin V (2013). Glacier systems and seasonal snow cover in six major Asian river basins: hydrological role under changing climate. Colombo: IWMI53
49 Shukla J, Mintz Y (1982). The influence of land-surface evapotranspiration on the earth’s climate. Science, 215(4539): 1498–1501
https://doi.org/10.1126/science.215.4539.1498
50 Su H, Yang Z L, Niu G Y, Dickinson R E (2008). Enhancing the estimation of continental-scale snow water equivalent by assimilating MODIS snow cover with the ensemble Kalman filter. J Geophys Res D Atmospheres, 113(D8): D08120
https://doi.org/10.1029/2007JD009232
51 Tait A, Armstrong R (1996). Evaluation of SMMR satellite-derived snow depth using ground-based measurements. Int J Remote Sens, 17(4): 657–665
https://doi.org/10.1080/01431169608949036
52 Thirel G, Martin E, Mahfouf J F, Massart S, Ricci S, Habets F (2010). A past discharges assimilation system for ensemble streamflow forecasts over France – Part 1: Description and validation of the assimilation system. Hydrol Earth Syst Sci, 14(8): 1623–1637
https://doi.org/10.5194/hess-14-1623-2010
53 Vikhamer D, Solberg R (2003). Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sens Environ, 84(1): 69–82
https://doi.org/10.1016/S0034-4257(02)00098-6
54 Yang F, Kumar A, Wang W, Juang H M H, Kanamitsu M (2001). Snow-albedo feedback and seasonal climate variability over North America. J Clim, 14(22): 4245–4248
https://doi.org/10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2
55 Zaitchik B F, Evans J P, Smith R B (2007). Regional impact of an elevated heat source: the Zagros plateau of Iran. J Clim, 20(16): 4133–4146
https://doi.org/10.1175/JCLI4248.1
56 Zaitchik B, Rodell M (2009). Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J Hydrometeorol, 10(1): 130–148
https://doi.org/10.1175/2008JHM1042.1
[1] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[2] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[3] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[4] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[5] Shiyong YAN, Ke SHI, Yi LI, Jinglong LIU, Hongfeng ZHAO. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China[J]. Front. Earth Sci., 2020, 14(1): 1-12.
[6] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[7] Dilhani Ishanka JAYATHILAKE, Tyler SMITH. Predicting the temporal transferability of model parameters through a hydrological signature analysis[J]. Front. Earth Sci., 2020, 14(1): 110-123.
[8] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[9] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[10] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[11] Zhonghua HONG, Xuesu LI, Yanling HAN, Yun ZHANG, Jing WANG, Ruyan ZHOU, Kening HU. Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data[J]. Front. Earth Sci., 2019, 13(3): 478-494.
[12] Xiaojuan HUANG, Mingguo MA, Xufeng WANG, Xuguang TANG, Hong YANG. The uncertainty analysis of the MODIS GPP product in global maize croplands[J]. Front. Earth Sci., 2018, 12(4): 739-749.
[13] D.M. HULTSTRAND, S.R. FASSNACHT. The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework[J]. Front. Earth Sci., 2018, 12(4): 728-738.
[14] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[15] S.R. FASSNACHT, K.S.J. BROWN, E.J. BLUMBERG, J.I. LÓPEZ MORENO, T.P. COVINO, M. KAPPAS, Y. HUANG, V. LEONE, A.H. KASHIPAZHA. Distribution of snow depth variability[J]. Front. Earth Sci., 2018, 12(4): 683-692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed