Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (1) : 110-123    https://doi.org/10.1007/s11707-019-0755-y
RESEARCH ARTICLE
Predicting the temporal transferability of model parameters through a hydrological signature analysis
Dilhani Ishanka JAYATHILAKE1, Tyler SMITH1,2()
1. Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
2. Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
 Download: PDF(1823 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Attention has recently increased on the use of hydrological signatures as a potential tool for assessing the fidelity of model structures and providing insights into the transfer of model parameters. The utility of hydrological signatures as model performance/reliability indicators in a calibration-validation testing scenario (i.e., the temporal transfer of model parameters) is the focus of this study. The Probability Distributed Model, a flexible conceptual hydrological model, is used to test the approach across a number of catchments included in the MOPEX data set. We explore the change in model performance across calibration and validation time periods and contrast it to the corresponding change in several hydrological signatures to assess signature worth. Results are explored in finer detail by utilizing a moving window approach to calibration and validation time periods. The results of this study indicated that the most informative signature can vary, both spatially and temporally, based on physical and climatic characteristics and their interaction to the model parameterization. Thus, one signature could not adequately illustrate complex watershed behaviors nor predict model performance in new analysis periods.

Keywords streamflow      hydrological signature      validation testing      model calibration     
Corresponding Author(s): Tyler SMITH   
Just Accepted Date: 11 September 2019   Online First Date: 07 November 2019    Issue Date: 24 March 2020
 Cite this article:   
Dilhani Ishanka JAYATHILAKE,Tyler SMITH. Predicting the temporal transferability of model parameters through a hydrological signature analysis[J]. Front. Earth Sci., 2020, 14(1): 110-123.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0755-y
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I1/110
1 A H Auer Jr (1974). The rain versus snow threshold temperatures. Weatherwise, 27(2): 67
https://doi.org/10.1080/00431672.1974.9931684
2 D B Baker, R P Richards, T T Loftus, J W Kramer (2004). A new flashiness index: characteristics and applications to midwestern rivers and streams. JAWRA J Am Water Res, 40(2): 503–522
3 H E Beck, A I van Dijk, A de Roo, D G Miralles, T R McVicar, J Schellekens, L A Bruijnzeel (2016). Global—scale regionalization of hydrologic model parameters. Water Resour Res, 52(5): 3599–3622
https://doi.org/10.1002/2015WR018247
4 K Beven (2002). Towards a coherent philosophy for modelling the environment. P Royal Soc A-Math Phy, 458(2026): 2465–2484
5 G Blöschl, M Sivapalan, H Savenije, T Wagener, A Viglione, eds. (2013). Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales. Cambridge University Press
6 M C Casper, G Grigoryan, O Gronz, O Gutjahr, G Heinemann, R Ley, A Rock (2012). Analysis of projected hydrological behavior of catchments based on signature indices. Hydrol Earth Syst Sci, 16(2): 409–421
https://doi.org/10.5194/hess-16-409-2012
7 S Castiglioni, L Lombardi, E Toth, A Castellarin, A Montanari (2010). Calibration of rainfall-runoff models in ungauged basins: a regional maximum likelihood approach. Adv Water Resour, 33(10): 1235–1242
https://doi.org/10.1016/j.advwatres.2010.04.009
8 A Dai (2008). Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys Res Lett, 35(12)
https://doi.org/10.1029/2008GL033295
9 C Donnelly, J C Andersson, B Arheimer (2016). Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol Sci J, 61(2): 255–273
https://doi.org/10.1080/02626667.2015.1027710
10 Q Duan, J Schaake, V Andréassian, S Franks, G Goteti, H V Gupta, Y M Gusev, F Habets, A Hall, L Hay, T Hogue, M Huang, G Leavesley, X Liang, O N Nasonova, J Noilhan, L Oudin, S Sorooshian, T Wagener, E F Wood (2006). Model parameter estimation experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. J Hydrol (Amst), 320(1–2): 3–17
https://doi.org/10.1016/j.jhydrol.2005.07.031
11 T Euser, H C Winsemius, M Hrachowitz, F Fenicia, S Uhlenbrook, H H G Savenije (2013). A framework to assess the realism of model structures using hydrological signatures. Hydrol Earth Syst Sci, 17(5): 1893–1912.
https://doi.org/10.5194/hess-17-1893-2013
12 J Ewen (2011). Hydrograph matching method for measuring model performance. J Hydrol (Amst), 408(1–2): 178–187
https://doi.org/10.1016/j.jhydrol.2011.07.038
13 R Grayson, G Blöschl (2001). Spatial patterns in catchment hydrology: observations and modelling. CUP Archive
14 B Hingray, B Schaefli, A Mezghani, Y Hamdi (2010). Signature-based model calibration for hydrological prediction in mesoscale Alpine catchments. Hydrolog Sci J, 55(6): 1002–1016
https://doi.org/10.1080/02626667.2010.505572
15 M Hrachowitz, O Fovet, L Ruiz, T Euser, S Gharari, R Nijzink, J Freer, H H G Savenije, C Gascuel-Odoux (2014). Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resour Res, 50(9): 7445–7469
https://doi.org/10.1002/2014WR015484
16 M Hrachowitz, H H G Savenije, G Blöschl, J J McDonnell, M Sivapalan, J W Pomeroy, B Arheimer, T Blume, M P Clark, U Ehret, F Fenicia, J E Freer, A Gelfan, H V Gupta, D A Hughes, R W Hut, A Montanari, S Pande, D Tetzlaff, P A Troch, S Uhlenbrook, T Wagener, H C Winsemius, R A Woods, E Zehe, C Cudennec (2013). A decade of predictions in ungauged Basins (PUB)—a review. Hydrol Sci J, 58(6): 1198–1255
https://doi.org/10.1080/02626667.2013.803183
17 A L Kay, D A Jones, S M Crooks, T R Kjeldsen, C F Fung (2007). An investigation of site-similarity approaches to generalisation of a rainfall-runoff model. Hydrol Earth Syst Sci Discuss, 11(1): 500–515
https://doi.org/10.5194/hess-11-500-2007
18 V I Koren, B D Finnerty, J C Schaake, M B Smith, D J Seo, Q Y Duan (1999). Scale dependencies of hydrologic models to spatial variability of precipitation. J Hydrol (Amst), 217(3–4): 285–302
https://doi.org/10.1016/S0022-1694(98)00231-5
19 I Masih, S Uhlenbrook, S Maskey, M D Ahmad (2010). Regionalization of a conceptual rainfall–runoff model based on similarity of the flow duration curve: a case study from the semi-arid Karkheh basin, Iran. J Hydrol (Amst), 391(1–2): 188–201
https://doi.org/10.1016/j.jhydrol.2010.07.018
20 R Merz, J Parajka, G Blöschl (2011). Time stability of catchment model parameters: implications for climate impact analyses. Water Resour Res, 47(2): W02531
https://doi.org/10.1029/2010WR009505
21 A Montanari, E Toth (2007). Calibration of hydrological models in the spectral domain: an opportunity for scarcely gauged basins? Water Resour Res, 43(5): W05434
https://doi.org/10.1029/2006WR005184
22 R J Moore (1985). The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci J, 30(2): 273–297
https://doi.org/10.1080/02626668509490989
23 R J Moore (2007). The PDM rainfall-runoff model. Hydrol Earth Syst Sci Discuss, 11(1): 483–499
https://doi.org/10.5194/hess-11-483-2007
24 J Nash, J V Sutcliffe (1970). River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol (Amst), 10(3): 282–290
https://doi.org/10.1016/0022-1694(70)90255-6
25 J D Olden, N L Poff (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res Appl, 19(2): 101–121
https://doi.org/10.1002/rra.700
26 J Parajka, G Blöschl, R Merz (2007). Regional calibration of catchment models: potential for ungauged catchments. Water Resour Res, 43(6): W06406
https://doi.org/10.1029/2006WR005271
27 S Patil, M Stieglitz (2012). Controls on hydrologic similarity: role of nearby gauged catchments for prediction at an ungauged catchment. Hydrol Earth Syst Sci, 16(2): 551–562
https://doi.org/10.5194/hess-16-551-2012
28 S D Patil, M Stieglitz (2015). Comparing spatial and temporal transferability of hydrological model parameters. J Hydrol (Amst), 525: 409–417
https://doi.org/10.1016/j.jhydrol.2015.04.003
29 C Prudhomme, T Haxton, S Crooks, C Jackson, A Barkwith, J Williamson, J Kelvin, J Mackay, L Wang, A Young, G Watts (2013). Future flows hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain. Earth Syst Sci Data, 5(1): 101–107
https://doi.org/10.5194/essd-5-101-2013
30 S Razavi, H V Gupta (2016a). A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. theory. Water Resour Res, 52(1): 423–439
https://doi.org/10.1002/2015WR017558
31 S Razavi, H V Gupta (2016b). A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. application. Water Resour Res, 52(1): 440–455
https://doi.org/10.1002/2015WR017559
32 L Samaniego, A Bárdossy, R Kumar (2010). Streamflow prediction in ungauged catchments using copula-based dissimilarity measures. Water Resour Res, 46(2): W02506
https://doi.org/10.1029/2008WR007695
33 J Samuel, P Coulibaly, R A Metcalfe (2011). Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. J Hydrol Eng, 16(5): 447–459
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000338
34 K Sawicz, T Wagener, M Sivapalan, P A Troch, G Carrillo (2011). Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrol Earth Syst Sci, 15(9): 2895–2911
https://doi.org/10.5194/hess-15-2895-2011
35 J Seibert (2003). Reliability of model predictions outside calibration conditions. Nord Hydrol, 34(5): 477–42
36 J Seibert, J J McDonnell (2002). On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resour Res, 38(11): 23–1
https://doi.org/10.1029/2001WR000978
37 B A Tolson, C A Shoemaker (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour Res, 43(1): W01413
https://doi.org/10.1029/2005WR004723
38 B A Tolson, C A Shoemaker (2008). Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resour Res, 44(4): W04411
https://doi.org/10.1029/2007WR005869
39 J Vaze, D A Post, F H S Chiew, J M Perraud, N R Viney, J Teng (2010). Climate non-stationarity-validity of calibrated rainfall-runoff models for use in climate change studies. J Hydrol (Amst), 394(3–4): 447–457
https://doi.org/10.1016/j.jhydrol.2010.09.018
40 T Wagener, N McIntyre, M J Lees, H S Wheater, H V Gupta (2003). Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrol Processes, 17(2): 455–476
https://doi.org/10.1002/hyp.1135
41 T Wagener, M Sivapalan, P Troch, R Woods (2007). Catchment classification and hydrologic similarity. Geogr Compass, 1(4): 901–931
https://doi.org/10.1111/j.1749-8198.2007.00039.x
42 I K Westerberg, J L Guerrero, P M Younger, K J Beven, J Seibert, S Halldin, J E Freer, C Y Xu (2011). Calibration of hydrological models using flow-duration curves. Hydrol Earth Syst Sci, 15(7): 2205–2227
https://doi.org/10.5194/hess-15-2205-2011
43 I K Westerberg, T Wagener, G Coxon, H K McMillan, A Castellarin, A Montanari, J Freer (2016). Uncertainty in hydrological signatures for gauged and ungauged catchments. Water Resour Res, 52(3): 1847–1865
https://doi.org/10.1002/2015WR017635
44 M Yadav, T Wagener, H Gupta (2007). Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Adv Water Resour, 30(8): 1756–1774
https://doi.org/10.1016/j.advwatres.2007.01.005
45 Y Q Zhang, N R Viney, F H S Chiew, A I J M Van Dijk, Y Y Liu (2011). Improving hydrological and vegetation modelling using regional model calibration schemes together with remote sensing data. In: Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM’11): 3448–3454
46 Y Zhang, H Zheng, F H Chiew, J P Arancibia, X Zhou (2016). Evaluating regional and global hydrological models against streamflow and evapotranspiration measurements. J Hydrometeorol, 17(3): 995–1010
https://doi.org/10.1175/JHM-D-15-0107.1
[1] Christine E. WEHNER, John D. STEDNICK. Effects of mountain pine beetle-killed forests on source water contributions to streamflow in headwater streams of the Colorado Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 496-504.
[2] Alba SANMIGUEL-VALLELADO, Enrique MORÁN-TEJEDA, Esteban ALONSO-GONZÁLEZ, Juan Ignacio LÓPEZ-MORENO. Effect of snow on mountain river regimes: an example from the Pyrenees[J]. Front. Earth Sci., 2017, 11(3): 515-530.
[3] Qiang ZHANG, Chong-Yu XU, Hui TAO, . Variability and stability of water resource in the arid regions of China: a case study of the Tarim River basin[J]. Front. Earth Sci., 2009, 3(4): 381-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed