Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (3) : 515-530    https://doi.org/10.1007/s11707-016-0630-z
RESEARCH ARTICLE
Effect of snow on mountain river regimes: an example from the Pyrenees
Alba SANMIGUEL-VALLELADO1(), Enrique MORÁN-TEJEDA1,2, Esteban ALONSO-GONZÁLEZ1, Juan Ignacio LÓPEZ-MORENO1
1. Pyrenean Institute of Ecology, CSIC (Spanish Research Council), Zaragoza, Spain
2. Department of Geography, University of the Balearic Islands, Palma de Mallorca, Spain
 Download: PDF(2004 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The purpose of this study was to characterize mountain river regimes in the Spanish Pyrenees and to assess the importance of snow accumulation and snowmelt on the timing of river flows. Daily streamflow data from 9 gauging stations in the Pyrenees were used to characterize river regimes. These data were analyzed by hydrological indices, with a focus on periods when snow accumulation and snowmelt occurred. These results were combined with data on Snow Water Equivalent (SWE) (from measurements of depth and density of snow in the main river basins and also simulated by a process-based hydrological model), snowmelting (simulated by a process-based hydrological model), precipitation (from observations), and temperature (from observations). Longitude and elevation gradients in the Pyrenees explain the transition of river regimes from those that mostly had low nival signals (in the west and at low elevations) to those that mostly had high nival signals (low winter runoff and late spring peakflow, in the east and at high elevations). Although trend analyses indicated no statistically significant changes, there was a trend of decreased nival signal over time in most of the analyzed rivers. Our results also demonstrated that snow processes cannot explain all of the interannual variability of river regimes, because the temporal distribution of liquid precipitation and temperature play key roles in hydrography.

Keywords river regime      precipitation      snow indices      Spanish Pyrenees      streamflow     
Corresponding Author(s): Alba SANMIGUEL-VALLELADO   
Just Accepted Date: 06 December 2016   Online First Date: 05 January 2017    Issue Date: 12 July 2017
 Cite this article:   
Alba SANMIGUEL-VALLELADO,Enrique MORÁN-TEJEDA,Esteban ALONSO-GONZÁLEZ, et al. Effect of snow on mountain river regimes: an example from the Pyrenees[J]. Front. Earth Sci., 2017, 11(3): 515-530.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0630-z
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I3/515
Series maxw dminw /days MAMJJ /% d30
/days
d50
/days
p5 do b)
/days
de c)
/days
Veral 1975 – 2010 0.16 5.00 ?0.60 ?1.25 ?3.75 ?0.06
Aragón 1950 – 2010 0.06 3.28 ?1.51 ?3.58 ?2.20 0.00 2.19
Ara 1951 – 2010 ?0.01 ?0.59 ?0.10 0.00 ?0.67 0.00 1.11
Ésera 1950 – 2010 0.00 0.00 ?0.73 ?1.47 ?1.85 0.03 1.26
Segre C 1950 – 2010 0.05 ?7.07 ?1.16 ?1.92 ?3.45 0.01 0.00
Segre A 1950 – 2010 ?0.03 0.00 0.49 1.43 ?0.44 ?0.01 1.34 ?1.43
Veral 1985 – 2010 0.03 5.35 ?0.97 ?1.21 ?2.50 ?0.05
Aragón 1985 – 2010 0.20 10.00 ?3.91 ?14.00 ?4.71 0.00 0.00
Ara 1985 – 2010 0.11 0.56 ?1.37 ?5.43 ?5.00 0.02 ?5.12
Ésera 1985 – 2010 0.05 ?4.00 ?0.77 ?4.44 ?4.71 0.00 ?3.33
Segre C 1985 – 2010 0.31 ?8.50 ?1.98 ?9.56 ?8.06 0.01 ?1.00
Segre B 1985 – 2010 ?0.09 ?4.62 1.19 3.81 ?1.67 ?0.02 ?2.73 ?3.60
Valira 1985 – 2010 ?0.03 0.48 2.89 4.62 0.00 ?0.08 ?5.56 ?1.55
Segre A 1985 – 2010 ?0.11 2.35 2.36 5.63 0.00 ?0.05 ?5.00 ?1.46
Carol 1985 – 2010 ?0.04 9.09 1.72 0.91 ?2.73 ?0.03 ?8.64 ?1.00
Mean 1985 – 2010 0.05 1.19 ?0.09 ?2.19 ?3.26 ?0.02 ?3.92 ?1.90
SD 1985 – 2010 0.14 6.27 2.26 6.74 2.62 0.03 2.76 1.15
  Change over time (decade ?1) in the Thiel-Sen’s slope estimator for selected gauging stations. Gauging stations are arranged from top to bottom by location (west to east)
  
1 J C Adam, A F Hamlet, D P Lettenmaier (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol Processes, 23(7): 962–972
https://doi.org/10.1002/hyp.7201
2 G T Auble, J M Friedman, M L Scott (1994). Relating riparian vegetation to present and future streamflows. Ecol Appl, 4(3): 544–554
https://doi.org/10.2307/1941956
3 A Bard, B Renard, M Lang (2010). Observed trends in the hydrologic regime of Alpine catchments. In: EGU General Assembly Conference Abstracts, vol. 12, p. 11627
4 T P Barnett, J C Adam, D P Lettenmaier (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303–309
https://doi.org/10.1038/nature04141
5 S Beguería, J I López-Moreno, A Lorente, M Seeger, J M García-Ruiz (2003). Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio, 32(4): 283–286
https://doi.org/10.1579/0044-7447-32.4.283
6 M D Bejarano, M Marchamalo, D G de Jalón, M G del Tánago (2010). Flow regime patterns and their controlling factors in the Ebro basin (Spain). J Hydrol (Amst), 385(1): 323–335
https://doi.org/10.1016/j.jhydrol.2010.03.001
7 M Beniston (2012). Is snow in the Alps receding or disappearing? Wiley Interdiscip Rev Clim Chang, 3(4): 349–358
https://doi.org/10.1002/wcc.179
8 D H Burn (2008). Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J Hydrol (Amst), 352(1-2): 225–238
https://doi.org/10.1016/j.jhydrol.2008.01.019
9 D H Burn, M A H Hag Elnur (2002). Detection of hydrologic trends and variability. J Hydrol (Amst), 255(1): 107–122
https://doi.org/10.1016/S0022-1694(01)00514-5
10 A M Camarasa-Belmonte, J Soriano (2014). Empirical study of extreme rainfall intensity in a semi-arid environment at different time scale. J Arid Environ, 100–101: 63–71
https://doi.org/10.1016/j.jaridenv.2013.10.008
11 D R Cayan (1996). Interannual climate variability and snowpack in the western United States. J Clim, 9(5): 928–948
https://doi.org/10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2
12 D R Cayan, M D Dettinger, S A Kammerdiener, J M Caprio, D H Peterson (2001). Changes in the onset of spring in the Western United States. Bull Am Meteorol Soc, 82(3): 399–415
https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2
13 G M Chauvin, G N Flerchinger, T E Link, D Marks, A H Winstral, M S Seyfried (2011). Long-term water balance and conceptual model of a semi-arid mountainous catchment. Journal of Hydrolology, 400(1–2): 133–143
https://doi.org/10.1016/j.jhydrol.2011.01.031
14 Z Chen, S E Grasby (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrolology, 365(1–2): 122–133
https://doi.org/10.1016/j.jhydrol.2008.11.031
15 D W Clow (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306
https://doi.org/10.1175/2009JCLI2951.1
16 M De Luis, M Brunetti, J C Gonzalez-Hidalgo, L A Longares, J Martin-Vide (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global Planet Change, 74(1): 27–33
https://doi.org/10.1016/j.gloplacha.2010.06.006
17 J P Dedieu, A Lessard-Fontaine, G Ravazzani, E Cremonese, G Shalpykova, M Beniston (2014). Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci Total Environ, 493: 1267–1279
https://doi.org/10.1016/j.scitotenv.2014.04.078
18 G Del Barrio, J Creus, J Puigdefábregas (1990). Thermal seasonality of the high mountains belt of the Pyrenees. Mt Res Dev, 10(3): 227–233
https://doi.org/10.2307/3673602
19 C Foy, M Arabi, H Yen, J Gironás, R T Bailey (2015). Multisite assessment of hydrologic processes in snow-dominated mountainous river basins in Colorado using a watershed model. J Hydrol Eng, 20(10): 04015017
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001130
20 M Gaetani, M Baldi, G A Dalu, G Maracchi (2011). Jetstream and rainfall distribution in the Mediterranean region. Nat Hazards Earth Syst Sci, 11(9): 2469–2481
https://doi.org/10.5194/nhess-11-2469-2011
21 J M García-Ruiz, J I López-Moreno, S M Vicente-Serrano, T Lasanta–Martínez, S Beguería (2011). Mediterranean water resources in a global change scenario. Earth Sci Rev, 105(3-4): 121–139
https://doi.org/10.1016/j.earscirev.2011.01.006
22 J M García-Ruiz, T J Puigdefábregas, J Creus-Novau (1985). Los recursos hídricos superficiales del Alto Aragón. Huesca: Instituto de Estudios Altoaragoneses
23 S E Godsey, J W Kirchner, C L Tague (2014). Effects of changes in winter snowpacks on summer low flows: case studies in the sierra nevada, California, USA. Hydrol Processes, 28(19): 5048–5064
https://doi.org/10.1002/hyp.9943
24 S Herrera, J M Gutiérrez, R Ancell, M R Pons, M D Frías, J Fernández (2012). Development and analysis of a 50‐year high‐resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol, 32(1): 74–85
https://doi.org/10.1002/joc.2256
25 S G Hinch, M C Healey, R E Diewert, M A Henderson, K A Thomson, R Hourston, F Juanes (1995). Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can J Fish Aquat Sci, 52(12): 2651–2659
https://doi.org/10.1139/f95-854
26 M Irannezhad, A K Ronkanen, B Kløve (2015). Effects of climate variability and change on snowpack hydrological processes in Finland. Cold Reg Sci Technol, 118: 14–29
https://doi.org/10.1016/j.coldregions.2015.06.009
27 I Jolliffe (2002). Principal Component Analysis and Factor Analysis. Principal Component Analysis. Springer Series in Statistics, 150–166
https://doi.org/10.1007/0-387-22440-8_7
28 H F Kaiser (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3): 187–200
https://doi.org/10.1007/BF02289233
29 H F Kaiser (1974). An index of factorial simplicity. Psychometrika, 39(1): 31–36
https://doi.org/10.1007/BF02291575
30 M Kendall (1975). Multivariate Analysis. London: Charles Griffin
31 C Kormann, T Francke, A Bronstert (2015). Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria. Journal of Water and Climate Change, 6(1): 124–143
https://doi.org/10.2166/wcc.2014.099
32 P R Kormos, D Marks, J P McNamara, H P Marshall, A Winstral, A N Flores (2014). Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone. Journal of Hydrolology, 519(PA): 190–204,
https://doi.org/10.1016/j.jhydrol.2014.06.051
33 W H Kruskal, W A Wallis (1952). Use of ranks in one-criterion variance analysis. J Am Stat Assoc, 47(260): 583–621
https://doi.org/10.1080/01621459.1952.10483441
34 N Lana-Renault, B Alvera, J M García-Ruiz (2011). Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment, ‎. Arct Antarct Alp Res, 43(2): 213–222
https://doi.org/10.1657/1938-4246-43.2.213
35 R López, C Justribó (2010). The hydrological significance of mountains: a regional case study, the Ebro River basin, northeast Iberian Peninsula. Hydrol Sci J, 55(2): 223–233
https://doi.org/10.1080/02626660903546126
36 J I López-Moreno (2005). Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct Antarct Alp Res, 37(2): 253–260
https://doi.org/10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2
37 J I López-Moreno, M Beniston, J M García-Ruiz (2008). Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Global Planet Change, 61(3): 300–312
https://doi.org/10.1016/j.gloplacha.2007.10.004
38 J I López-Moreno, S R Fassnacht, S Beguería, J Latron (2011b). Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. Cryosphere, 5(3): 617–629
https://doi.org/10.5194/tc-5-617-2011
39 J I López-Moreno, S R Fassnacht, J T Heath, K N Musselman, J Revuelto, J Latron, E Morán-Tejeda, T Jonas (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: implications for estimating snow water equivalent. Adv Water Resour, 55: 40–52
https://doi.org/10.1016/j.advwatres.2012.08.010
40 J I López-Moreno, J M García-Ruiz (2004). Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol Sci J, 49(5) doi: 10.1623/hysj.49.5.787.55135
41 J I López-Moreno, S Goyette, M Beniston (2009). Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol (Amst), 374(3): 384–396
https://doi.org/10.1016/j.jhydrol.2009.06.049
42 J I López-Moreno, S M Vicente-Serrano, E Morán-Tejeda, Zabalza J, J Lorenzo-Lacruz, J M García-Ruiz (2011a). Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol Earth Syst Sci, 15(1): 311–322
https://doi.org/10.5194/hess-15-311-2011
43 J I López-Moreno, J Revuelto, I Rico, J Chueca-Cía, A Julián, A Serreta, E Serrano, S M Vicente-Serrano, C Azorín-Molina, E Alonso-González, J M García-Ruiz (2016). Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. Cryosphere, 10(2): 681–694
https://doi.org/10.5194/tc-10-681-2016
44 J I López-Moreno, S M Vicente-Serrano, J Zabalza, J Revuelto, M Gilaberte, C Azorín-Molina, E Morán-Tejeda, J M García-Ruiz, C Tague (2014). Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI. Pirineos, 169(0): e004
https://doi.org/10.3989/Pirineos.2014.169004
45 A C Lute, J T Abatzoglou, K C Hegewisch (2015). Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour Res, 51(2): 960–972
https://doi.org/10.1002/2014WR016267
46 H B Mann (1945). Nonparametric tests against trend. Econometrica, 13(3): 245–259
https://doi.org/10.2307/1907187
47 H B Mann, D R Whitney (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat, 18(1): 50–60
https://doi.org/10.1214/aoms/1177730491
48 R Marti, S Gascoin, T Houet, O Ribière, D Laffly, T Condom, S Monnier, M Schmutz, C Camerlynck, J P Tihay, J M Soubeyroux, P René (2015). Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age. Cryosphere, 9(5): 1773–1795
https://doi.org/10.5194/tc-9-1773-2015
49 M H Masiokas, R Villalba, B H Luckman, S Mauget (2010). Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. J Hydrometeorol, 11(3): 822–831
https://doi.org/10.1175/2010JHM1191.1
50 J N Moore, J T Harper, M C Greenwood (2007). Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Geophys Res Lett, 34(16) doi: 10.1029/2007GL031022
51 E Morán-Tejeda, S Herrera, J I López-Moreno, J Revuelto, A Lehmann, M Beniston (2013). Evolution and frequency (1970-2007) of combined temperature-precipitation modes in the Spanish mountains and sensitivity of snow cover. Reg Environ Change, 13(4): 873–885
https://doi.org/10.1007/s10113-012-0380-8
52 E Morán-Tejeda, J Lorenzo-Lacruz, J I López-Moreno, A Ceballos-Barbancho, J Zabalza, S M Vicente-Serrano (2012). Reservoir Management in the Duero Basin (Spain): impact on River Regimes and the Response to Environmental Change. Water Resour Manage, 26(8): 2125–2146
https://doi.org/10.1007/s11269-012-0004-6
53 E Morán-Tejeda, J Lorenzo-Lacruz, J I López-Moreno, K Rahman, M Beniston (2014). Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol (Amst), 517: 1114–1127
https://doi.org/10.1016/j.jhydrol.2014.06.053
54 E Morán-Tejeda, J Zabalza, K Rahman, A Gago-Silva, J I López-Moreno, S Vicente-Serrano, A Lehmann, C L Tague, M Beniston (2015). Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology, 8(8): 1396–1416
https://doi.org/10.1002/eco.1590
55 J Peña, M Lozano (2004). Las unidades del relieve aragonés, Geografía Física de Aragón, Aspectos Generales Y Temáticos. Zaragoza: Universidad de Zaragoza
56 N Poff, M M Brinson, J Day (2002). Aquatic ecosystems and global climate change.Arlington: Pew Center on Global Climate Change
57 S M Pradhanang, A Frei, M Zion, E M Schneiderman, T S Steenhuis, D Pierson (2013). Rain-on-snow runoff events in New York. Hydrol Processes, 27(21): 3035–3049
https://doi.org/10.1002/hyp.9864
58 J Revuelto-Benedí, J I López-Moreno, E Morán-Tejada, S R Fassnacht, S M Vicente-Serrano (2012). Variabilidad interanual del manto de nieve en el Pirineo: tendencias observadas y su relación con índices de teleconexión durante el periodo 1985-2011. In: 8° Congreso Internacional sobre Cambio climático, Extremos e Impactos. Salamanca: Asociación Española de Climatología, 613–621
59 M B Richman (1986). Rotation of principal components. J Climatol, 6(3): 293–335
https://doi.org/10.1002/joc.3370060305
60 K R Ryberg, F A Akyüz, G J Wiche, W Lin (2016). Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol Processes, 30(8): 1208–1218
https://doi.org/10.1002/hyp.10693
61 T Sankey, J Donald, J McVay, M Ashley, F O’Donnell, S M Lopez, A Springer (2015). Multi-scale analysis of snow dynamics at the southern margin of the North American continental snow distribution. Remote Sens Environ, 169: 307–319
https://doi.org/10.1016/j.rse.2015.08.028
62 M Schnorbus, A Werner, K Bennett (2014). Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol Processes, 28(3): 1170–1189
https://doi.org/10.1002/hyp.9661
63 P Singh, G Spitzbart, H Hübl, H W Weinmeister (1997). Hydrological response of snowpack under rain-on-snow events: a field study. J Hydrol (Amst), 202(1): 1–20
https://doi.org/10.1016/S0022-1694(97)00004-8
64 I T Stewart (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Processes, 23(1): 78–94
https://doi.org/10.1002/hyp.7128
65 I T Stewart, D R Cayan, M D Dettinger (2005). Changes toward Earlier Streamflow Timing across Western North America. J Climatol, 18(8): 1136–1155
https://doi.org/10.1175/JCLI3321.1
66 J Tuset, D Vericat, R J Batalla (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci Total Environ, 540: 114–132
https://doi.org/10.1016/j.scitotenv.2015.07.075
67 D Viviroli, H H Dürr, B Messerli, M Meybeck, R Weingartner (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res, 43(7): doi: 10.1029/2006WR005653
68 J H Ward Jr (1963). Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc, 58(301): 236–244
https://doi.org/10.1080/01621459.1963.10500845
69 A C Whitaker, H Sugiyama, K Hayakawa (2008). Effect of snow cover conditions on the hydrologic regime: case study in a pluvial-nival watershed, Japan. J Am Water Resour Assoc, 44(4): 814–828
https://doi.org/10.1111/j.1752-1688.2008.00206.x
70 Z Wu, N E Huang, S R Long, C K Peng (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104(38): 14889–14894
https://doi.org/10.1073/pnas.0701020104
71 T Yamanaka, Y Wakiyama, K Suzuki (2012). Is snowmelt runoff timing in the Japanese Alps region shifting toward earlier in the year? Hydrological Research Letters, 6(0): 87–91
https://doi.org/10.3178/hrl.6.87
72 D Yang, Y Zhao, R Armstrong, D Robinson (2009). Yukon River streamflow response to seasonal snow cover changes. Hydrol Processes, 23(1): 109–121
https://doi.org/10.1002/hyp.7216
73 S Yue, P Pilon, G Cavadias (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol (Amst), 259(1): 254–271
https://doi.org/10.1016/S0022-1694(01)00594-7
[1] Munkhdulam OTGONBAYAR, Clement ATZBERGER, Erdenesukh SUMIYA, Sainbayar DALANTAI, Jonathan CHAMBERS. Estimation of bioclimatic variables of Mongolia derived from remote sensing data[J]. Front. Earth Sci., 2022, 16(2): 323-339.
[2] Shengming TANG, Yun GUO, Xu WANG, Jie TANG, Tiantian LI, Bingke ZHAO, Shuai ZHANG, Yongping LI. Validation of Doppler Wind Lidar during Super Typhoon Lekima (2019)[J]. Front. Earth Sci., 2022, 16(1): 75-89.
[3] Shuai ZHANG, Jing HAN, Bingke ZHAO, Zhigang CHU, Jie TANG, Limin LIN, Xiaoqin LU, Jiaming YAN. Consistency correction of echo intensity data for multiple radar systems and its application in quantitative estimation of typhoon precipitation[J]. Front. Earth Sci., 2022, 16(1): 99-108.
[4] Jiancheng QIN, Buda SU, Hui TAO, Yanjun WANG, Jinlong HUANG, Tong JIANG. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China[J]. Front. Earth Sci., 2021, 15(1): 23-37.
[5] Baofu LI, Jili ZHENG, Xun SHI, Yaning CHEN. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China[J]. Front. Earth Sci., 2020, 14(3): 568-577.
[6] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[7] Dilhani Ishanka JAYATHILAKE, Tyler SMITH. Predicting the temporal transferability of model parameters through a hydrological signature analysis[J]. Front. Earth Sci., 2020, 14(1): 110-123.
[8] Peiyan CHEN, Hui YU, Ming XU, Xiaotu LEI, Feng ZENG. A simplified index to assess the combined impact of tropical cyclone precipitation and wind on China[J]. Front. Earth Sci., 2019, 13(4): 672-681.
[9] Jia ZHU, Jiong SHU, Xing YU. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm[J]. Front. Earth Sci., 2019, 13(4): 721-732.
[10] Linna ZHAO, Xuemei BAI, Dan QI, Cheng XING. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China[J]. Front. Earth Sci., 2019, 13(4): 758-777.
[11] Qianfeng WANG, Jingyu ZENG, Song LENG, Bingxiong FAN, Jia TANG, Cong JIANG, Yi HUANG, Qing ZHANG, Yanping QU, Wulin WANG, Wei SHUI. The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century[J]. Front. Earth Sci., 2018, 12(4): 818-833.
[12] Xuerongzi HUANG, Dashan WANG, Yu LIU, Zhizhou FENG, Dagang WANG. Evaluation of extreme precipitation based on satellite retrievals over China[J]. Front. Earth Sci., 2018, 12(4): 846-861.
[13] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[14] Christine E. WEHNER, John D. STEDNICK. Effects of mountain pine beetle-killed forests on source water contributions to streamflow in headwater streams of the Colorado Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 496-504.
[15] T. STOICHEV, J. ESPINHA MARQUES, C.M. ALMEIDA, A. DE DIEGO, M.C.P. BASTO, R. MOURA, V.M. VASCONCELOS. Simple statistical models for relating river discharge with precipitation and air temperature—Case study of River Vouga (Portugal)[J]. Front. Earth Sci., 2017, 11(2): 203-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed