Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (4) : 846-861    https://doi.org/10.1007/s11707-017-0643-2
RESEARCH ARTICLE
Evaluation of extreme precipitation based on satellite retrievals over China
Xuerongzi HUANG1, Dashan WANG3, Yu LIU1, Zhizhou FENG1, Dagang WANG1,2,3()
1. Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China
2. Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education Institute, Sun Yat-sen University, Guangzhou 510275, China
3. Center of Integrated Geographic Information Analysis, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(2809 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The objective of this study is to evaluate satellite precipitation extremes of the Tropical Rainfall Measuring Mission (TRMM) 3B42 Version 7 product over China during the period of 2009–2013. Eight extreme indices are used to characterize precipitation extremes: monthly maximum 1-day precipitation (RX1day), monthly maximum consecutive 2-day precipitation (RX2day), monthly maximum 5-day consecutive precipitation (RX5day), simple daily intensity index (SDII), annual total precipitation amount for the wet days (PRCPTOT), annual wet days (R1), consecutive dry days (CDD), and consecutive wet days (CWD). The precipitation amount for indices RX1day, RX2day, RX5day, and PRCPTOT is well captured by TRMM 3B42-V7, as verified by lower mean relative bias and normalized root mean square error and the high spatial correlation coefficient. In contrast, the performance of TRMM 3B42-V7 in depicting the indices on intensity and duration (i.e., SDII, R1, CDD, and CWD) is not as good as its performance in depicting the precipitation amount indices. TRMM 3B42-V7 can reproduce extreme indices better in eastern China than in western China, and better in summer than in winter. Probability density function is also calculated better for RX1day, RX2day, RX5day, and PRCPTOT than for SDII, R1, CDD, and CWD. Investigation on the monthly time series of RX1day, RX2day, and RX5day at different spatial scales indicates that TRMM 3B42-V7 performs better at the large spatial scale than at the grid cell scale. Caution should be observed when the satellite-based extreme indices are used.

Keywords satellite      extreme precipitation      TRMM      China     
Corresponding Author(s): Dagang WANG   
Just Accepted Date: 27 May 2017   Online First Date: 21 June 2017    Issue Date: 20 November 2018
 Cite this article:   
Xuerongzi HUANG,Dashan WANG,Yu LIU, et al. Evaluation of extreme precipitation based on satellite retrievals over China[J]. Front. Earth Sci., 2018, 12(4): 846-861.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0643-2
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I4/846
Index Region Annual Spring Summer Autumn Winter
RX1day China 10.28 10.37 1.53 4.10 43.72
Eastern China 15.21 23.59 5.83 16.32 56.97
Western China –0.08 –19.99 –8.23 –22.37 12.67
RX2day China 5.25 4.21 –1.59 –0.49 34.85
Eastern China 9.82 17.29 2.43 11.07 47.77
Western China –4.30 –24.81 –10.47 –24.78 3.71
RX5day China 3.19 3.20 –1.86 –2.10 26.61
Eastern China 7.17 13.82 2.34 8.49 37.32
Western China –4.81 –21.27 –10.42 –22.83 –1.68
Tab.1  Relative bias (MRB) of TRMM 3B42-V7 against CPAP for different regions and different seasons. Western (eastern) China here is defined as west (east) of 105°E
Statistics Region SDII PRCPTOT R1 CDD CWD
MRB/% China 3.72 –0.2 –4.83 –0.32 –11.77
Eastern China 16.30 2.75 –11.18 7.92 –13.07
Western China –14.23 –5.88 3.61 –5.05 –10.54
NRMSE China 0.33 0.31 0.32 0.34 0.56
Eastern China 0.26 0.13 0.25 0.27 0.43
Western China 0.42 0.60 0.41 0.35 0.66
CC China 0.82 0.94 0.84 0.68 0.57
Eastern China 0.88 0.98 0.84 0.65 0.52
Western China 0.81 0.88 0.84 0.61 0.58
Tab.2  The mean of PRCPTOT, R1, SDII, CDD and CWD based on gauge observations, and root mean square error (RMSE), relative bias (RB), and correlation coefficient (CC) of TRMM 3B42 against CPAP for different regions
Index Region Annual Spring Summer Autumn Winter
RX1day China 0.35 0.54 0.34 0.64 1.22
Eastern China 0.25 0.42 0.21 0.32 1.08
Western China 0.56 0.81 0.6 1.13 1.31
RX2day China 0.32 0.5 0.32 0.55 1.1
Eastern China 0.2 0.36 0.19 0.27 0.95
Western China 0.56 0.83 0.59 0.97 1.26
RX5day China 0.3 0.45 0.32 0.49 0.93
Eastern China 0.16 0.28 0.17 0.23 0.77
Western China 0.57 0.82 0.58 0.84 1.18
Tab.3  Normalized root mean square error (NRMSE) of TRMM 3B42-V7 against CPAP for different regions and different seasons. Western (eastern) China here is defined as west (east) of 105°E
Index Region Annual Spring Summer Autumn Winter
RX1day China 0.92 0.88 0.87 0.72 0.85
Eastern China 0.95 0.95 0.88 0.91 0.91
Western China 0.82 0.74 0.73 0.47 0.72
RX2day China 0.93 0.88 0.89 0.79 0.87
Eastern China 0.97 0.96 0.91 0.94 0.93
Western China 0.84 0.77 0.78 0.56 0.73
RX5day China 0.94 0.92 0.90 0.84 0.90
Eastern China 0.97 0.98 0.93 0.95 0.94
Western China 0.86 0.81 0.82 0.67 0.73
Tab.4  Correlation coefficient (CC) of TRMM 3B42-V7 against CPAP for different regions and different seasons. Western (eastern) China here is defined as west (east) of 105°E
Fig.1  The relative frequency of (a) RX1day, (b) RX2day, and (c) RX5day derived from CPAP and TRMM 3B42-V7 1) annually, and in four seasons: 2) spring, 3) summer, 4) autumn, 5) winter over China.
Fig.2  The same as the Fig. 1 except for eastern China.
Fig.3  The same as the Fig. 1 except for western China.
Fig.4  The relative frequency of (a) SDII, (b) PRCPTOT, and (c) R1 derived from CPAP and TRMM 3B42-V7 over 1) China, 2) eastern China, and 3) western China.
Fig.5  The relative frequency of (a) CDD, and (b) CWD derived from CPAP and TRMM 3B42-V7 over 1) China, 2) eastern China, and 3) western China.
Fig.6  The monthly values of indices of (a) RX1day, (b) RX2day, and (c) RX5day over 1) China, 2) Eastern China, 3) Western China derived from CPAP and TRMM 3B42-V7.
Fig.7  The monthly values of indices of (a) RX1day, (b) RX2day, and (c) RX5day at a grid cell close to 1) Beijing, 2) Urumchi, 3) Shenyang, 4) Wuhan, 5) Chongqing, 6) Shanghai, and 7) Guangzhou derived from CPAP and TRMM 3B42-V7.
1 AghaKouchak A, Behrangi A, Sorooshian S, Hsu K, Amitai E(2011). Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J Geophys Res Atmos (1984–2012), 116(D2), doi:10.1029/2010JD014741
2 Alexander L V, Zhang X, Peterson T C, Caesar J, Gleason B, Klein Tank A M G, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D B, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J L (2013). Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos, 111: D05109
3 Allen C D, Macalady A K, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D D, Hogg E H T, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J H, Allard G, Running S W, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage, 259(4): 660–684
https://doi.org/10.1016/j.foreco.2009.09.001
4 Asante K O, Macuacua R D, Artan G A, Lietzow R W, Verdin J P (2007). Developing a flood monitoring system from remotely sensed data for the Limpopo Basin. IEEE Trans Geosci Remote Sens, 45(6): 1709–1714
https://doi.org/10.1109/TGRS.2006.883147
5 Chen S, Hong Y, Gourley J J, Huffman G J, Tian Y, Cao Q, Kirstetter P E, Hu J, Hardy J, Xue X (2013a). Evaluation of the successive V6 and V7 TRMM multi-satellite precipitation analysis over the continental United States. Water Resour Res, 10 doi:10.1002/2012WR012795
6 Chen S, Hong Y, Gourley J J, Kirstette P E, Yong B, Tian Y, Zhang Z, Hardy J (2013b). Similarity and difference of the two successive V6 and V7 TRMM multi-satellite precipitation analysis (TMPA) performance over China. J Geophys Res, 118 doi:10.1002/2013jd019964
7 Chen Y, Ebert E E, Walsh K J, Davidson N E (2013). Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. J Geophys Res Atmos (1984–2012), 118(21): 11966–11978, doi:10.1002/2013JD020319
8 De Boeck H J, Dreesen F E, Janssens I A, Nijs I (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol, 189(3): 806–817
https://doi.org/10.1111/j.1469-8137.2010.03515.x
9 Ebert E E, Janowiak J E, Kidd C (2007). Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soc, 88(1): 47–64
https://doi.org/10.1175/BAMS-88-1-47
10 Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J A (2011). Global ranking of port cities with high exposure to climate extremes. Clim Change, 104(1): 89–111
https://doi.org/10.1007/s10584-010-9977-4
11 Hou A Y, Kakar R K, Neeck S, Azarbarzin A A, Kummerow C D, Kojima M, Oki R, Nakamura K, Iguchi T (2014). The global precipitation measurement mission. Bull Am Meteorol Soc, 95(5): 701–722
https://doi.org/10.1175/BAMS-D-13-00164.1
12 Huffman G J, Bolvin D T (2007). TRMM and other data precipitation data set documentation. Laboratory for Atmospheres, NASA Goddard Space Flight Center and Science Systems and Applications, Available online
13 Huffman G J, Bolvin D T (2013). Real-Time TRMM Multi-Satellite Precipitation Analysis Data Set Documentation.
14 Huffman G J, Bolvin D T, Braithwaite D, Hsu K, Joyce R, Xie P (2014). GPM Integrated Multi-Satellite Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 4.4. PPS, NASA/GSFC, 30 pp.<>
15 Huffman G J, Bolvin D T, Nelkin E J, Wolff D B, Adler R F, Gu G, Hong Y, Bowman K P, Stocker E F (2007). The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol, 8(1): 38–55
https://doi.org/10.1175/JHM560.1
16 Joyce R J, Janowiak J E, Arkin P A, Xie P (2004). CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol, 5(3): 487–503
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
17 Kidd C, Bauer P, Turk J, Huffman G J, Joyce R, Hsu K L, Braithwaite D (2012). Intercomparison of high-resolution precipitation products over northwest Europe. J Hydrometeorol, 13(1): 67–83
https://doi.org/10.1175/JHM-D-11-042.1
18 Klein Tank A M G, Wijngaard J B, Können G P, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen A F V, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander L V, Petrovic P (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol, 22(12): 1441–1453
https://doi.org/10.1002/joc.773
19 Li N, Tang G, Zhao P, Hong Y, Gou Y, Yang K (2017). Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos Res, 183: 212–223
https://doi.org/10.1016/j.atmosres.2016.07.020
20 Liu Z (2015). Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products. Atmos Res, 153: 119–133
https://doi.org/10.1016/j.atmosres.2014.07.032
21 Lockhoff M, Zolina O, Simmer C, Schulz J (2014). Evaluation of satellite-retrieved extreme precipitation over Europe using Gauge Observations. J Clim, 27(2): 607–623
https://doi.org/10.1175/JCLI-D-13-00194.1
22 Menne M J, Durre I, Vose R S, Gleason B E, Houston T G (2012). An overview of the global historical climatology network-daily database. J Atmos Ocean Technol, 29(7): 897–910
https://doi.org/10.1175/JTECH-D-11-00103.1
23 Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane J E (2009). Precipitation: measurement, remote sensing, climatology and modeling. Atmos Res, 94(4): 512–533
https://doi.org/10.1016/j.atmosres.2009.08.017
24 Moberg A, Jones P D (2005). Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int J Climatol, 25(9): 1149–1171
https://doi.org/10.1002/joc.1163
25 Monier E, Gao X (2014). Climate change impacts on extreme events in the United States: an uncertainty analysis. Clim Change, 131(1):67–81
26 Nastos P T, Kapsomenakis J, Douvis K C (2013). Analysis of precipitation extremes based on satellite and high-resolution gridded data set over Mediterranean basin. Atmos Res, 131: 46–59
https://doi.org/10.1016/j.atmosres.2013.04.009
27 Peterson T, Daan H, Jones P (1997). Initial selection of a GCOS surface network. Bull Am Meteorol Soc, 78(10): 2145–2152
https://doi.org/10.1175/1520-0477(1997)078<2145:ISOAGS>2.0.CO;2
28 Prakash S, Mitra A K, Pai D S,AghaKouchak A (2016). From TRMM to GPM: how well can heavy rainfall be detected from space? Adv Water Resour, doi:10.1016/j.advwatres.2015.11.008
29 Qiao L, Hong Y, Chen S, Zou C B, Gourley J J, Yong B (2014). Performance assessment of the successive Version 6 and Version 7 TMPA products over the climate-transitional zone in the southern Great Plains, USA. J Hydrol (Amst), 513: 446–456
https://doi.org/10.1016/j.jhydrol.2014.03.040
30 Rhee J, Im J, Carbone G J (2010). Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ, 114(12): 2875–2887
https://doi.org/10.1016/j.rse.2010.07.005
31 Romilly T G, Gebremichael M (2011). Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol Earth Syst Sci, 15(5): 1505–1514
https://doi.org/10.5194/hess-15-1505-2011
32 Shen Y, Feng M, Zhang H, Gao F (2010a). Interpolation methods of China daily precipitation data. J Appl Meteor Sci, 21(3): 279–281 (in Chinese)
33 Shen Y, Xiong A, Wang Y, Xie P (2010b). Performance of high-resolution satellite precipitation products over China. J Geophys Res (1984–2012), 115(D2), doi:10.1029/2009JD012097
34 Su F, Hong Y, Lettenmaier D P (2008). Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol, 9(4): 622–640
https://doi.org/10.1175/2007JHM944.1
35 Tang G, Ma Y, Long D, Zhong L, Hong Y (2016). Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J Hydrol (Amst), 533: 152–167
https://doi.org/10.1016/j.jhydrol.2015.12.008
36 Thibeault J M, Seth A (2014). Changing climate extremes in the Northeast United States: observations and projections from CMIP5. Clim Change, 127(2): 273–287
https://doi.org/10.1007/s10584-014-1257-2
37 Tian Y, Peters-Lidard C D, Eylander J B, Joyce R J, Huffman G J, Adler R F, Hsu K, Turk FJ, Garcia M, Zeng J (2009). Component analysis of errors in satellite-based precipitation estimates. J Geophys Res Atmos (1984-2012), 114(D24), doi:10.1029/2009JD011949
38 Vila D, Ferraro R, Joyce R (2007). Evaluation and improvement of AMSU precipitation retrievals. J Geophys Res Atmos (1984-2012), 112(D20), doi:10.1029/2007JD008617
39 Westra S, Alexander L V, Zwiers F W (2013). Global increasing trends in annual maximum daily precipitation. J Clim, 26(11): 3904–3918
https://doi.org/10.1175/JCLI-D-12-00502.1
40 WMO (2014). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes 1970–2012.
41 Yong B, Chen B, Gourley J J, Ren L, Hong Y, Chen X, Wang W, Chen S, Gong L (2014). Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J Hydrol (Amst), 508: 77–87
https://doi.org/10.1016/j.jhydrol.2013.10.050
42 Yong B, Liu D, Gourley J J, Tian Y, Huffman G J, Ren L L, Hong Y (2015). Global view of real-time TRMM multi-satellite precipitation analysis: implication to its successor global precipitation measurement mission. Bull Amer Meteor Soc, doi: 10.1175/BAMS-D-14-00017.1
43 You Q, Kang S, Aguilar E, Pepin N, Flügel W A, Yan Y, Xu Y, Zhang Y, Huang J (2011). Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn, 36(11–12): 2399–2417
https://doi.org/10.1007/s00382-009-0735-0
44 Zhao T, Yatagai A (2014). Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int J Climatol, 34(8): 2749–2762
https://doi.org/10.1002/joc.3872
45 Zulkafli Z, Buytaert W, Onof C, Manz B, Tarnavsky E, Lavado W, Guyot J L (2014). A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River basins. J Hydrometeorol, 15(2): 581–592
https://doi.org/10.1175/JHM-D-13-094.1
[1] Ying LIU, Xudong WU, Xudong SUN, Chenghe GUAN, Bo ZHANG, Xiaofang WU. Exports-driven primary energy requirements and the structural paths of Chinese regions[J]. Front. Earth Sci., 2020, 14(4): 803-815.
[2] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[3] Baofu LI, Jili ZHENG, Xun SHI, Yaning CHEN. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China[J]. Front. Earth Sci., 2020, 14(3): 568-577.
[4] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
[5] Chao FU, Xinghe YU, Xue FAN, Yulin HE, Jinqiang LIANG, Shunli LI. Classification of mass-transport complexes and distribution of gashydrate-bearing sediments in the northeastern continental slope of the South China Sea[J]. Front. Earth Sci., 2020, 14(1): 25-36.
[6] Yang DING, Zhigang YAO, Lingling ZHOU, Min BAO, Zhengchen ZANG. Numerical modeling of the seasonal circulation in the coastal ocean of the Northern South China Sea[J]. Front. Earth Sci., 2020, 14(1): 90-109.
[7] Xiaoqin LU, Hui YU, Xiaoming YANG, Xiaofeng LI, Jie TANG. A new technique for automatically locating the center of tropical cyclones with multi-band cloud imagery[J]. Front. Earth Sci., 2019, 13(4): 836-847.
[8] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[9] Zhuang LI, Bin CHEN. Lithotectonic elements of Archean basement on the Liaodong Peninsula and its vicinity, North China Craton, China[J]. Front. Earth Sci., 2019, 13(1): 209-228.
[10] Fenliang LIU, Hongshan GAO, Baotian PAN, Zongmeng LI, Huai SU. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China[J]. Front. Earth Sci., 2019, 13(1): 55-74.
[11] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[12] Jincui WANG, Yongsheng ZHAO, Jichao SUN, Ying ZHANG, Chunyan LIU. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China[J]. Front. Earth Sci., 2019, 13(1): 33-42.
[13] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[14] Qianfeng WANG, Jingyu ZENG, Song LENG, Bingxiong FAN, Jia TANG, Cong JIANG, Yi HUANG, Qing ZHANG, Yanping QU, Wulin WANG, Wei SHUI. The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century[J]. Front. Earth Sci., 2018, 12(4): 818-833.
[15] Jun WANG, Xiaohong MENG, Zhaoxi CHEN, Fang LI. Interpretation of gravity data for fault distribution near the Mongolia–Hinggan metallogenic belt in the eastern China-Mongolia frontier area[J]. Front. Earth Sci., 2018, 12(4): 808-817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed