Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (4) : 721-732    https://doi.org/10.1007/s11707-019-0798-0
RESEARCH ARTICLE
Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm
Jia ZHU1,2, Jiong SHU1,2(), Xing YU3
1. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
2. School of Geographic Sciences, East China Normal University, Shanghai 200241, China
3. Beijing Thematic Technology Co., Ltd., Beijing 100020, China
 Download: PDF(1548 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Inclusion of cloud processes is essential for precipitation prediction with a numerical weather prediction model. However, convective parameterization contains numerous parameters whose values are in large uncertainties. In particular, it is still not clear how the parameters of a sub-grid-scale convection scheme can be modified to improve high-resolution precipitation prediction. To address these issues, a micro-genetic (micro-GA) algorithm is coupled to the Kain-Fritsch (KF) convective parameterization scheme (CPS) in the WRF to improve the quantitative precipitation forecast (QPF). The optimization focuses on two parameters in the KF scheme: the convective time scale and the conversion rate. The optimizing process is controlled by the micro-GA using a QPF skill score as the fitness function. Two heavy rainfall events related to typhoons that made landfall over the south-east coastal region of China are selected, and for each case the parameter values are adjusted to achieve the best QPF skill. Significant improvements in QPF are evident with an increase in the average equitable threat score (ETS) by 5.8% for the first case, and by 18.4% for the second case. The results demonstrate that the micro-GA-KF coupling system is effective in optimizing the parameter values, which affect the applicability of CPS in a high-resolution model, and therefore improves the rainfall prediction in both ETS and spatial distribution.

Keywords quantitative precipitation forecast      micro-GA      Kain-Fritsch scheme      typhoon     
Corresponding Author(s): Jiong SHU   
Just Accepted Date: 24 October 2019   Online First Date: 29 November 2019    Issue Date: 30 December 2019
 Cite this article:   
Jia ZHU,Jiong SHU,Xing YU. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm[J]. Front. Earth Sci., 2019, 13(4): 721-732.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0798-0
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I4/721
1 A Arakawa (2004). The cumulus parameterization problem: Past, present, and future. J Clim, 17(13): 2493–2525
https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2
2 A Aybar-Ruiz, S Jiménez-Fernández, L Cornejo-Bueno, C Casanova-Mateo, J Sanz-Justo, P Salvador-González, S Salcedo-Sanz (2016). A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol Energy, 132: 129–142
https://doi.org/10.1016/j.solener.2016.03.015
3 A Álvarez, C López, M Riera, E Hernández-García, J Tintoré (2000). Forecasting the sst space-time variability of the Alboran Sea with genetic algorithms. Geophys Res Lett, 27(17): 2709–2712
https://doi.org/10.1029/1999GL011226
4 X Bao, N E Davidson, H Yu, M C N Hankinson, Z Sun, L J Rikus, J Liu, Z Yu, D Wu (2015). Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). Mon Weather Rev, 143(9): 3377–3405
https://doi.org/10.1175/MWR-D-14-00241.1
5 P Bauer, A Thorpe, G Brunet (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567): 47–55
https://doi.org/10.1038/nature14956 pmid: 26333465
6 K F Brill, F Mesinger (2009). Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores. Weather Forecast, 24(6): 1748–1754
https://doi.org/10.1175/2009WAF2222272.1
7 O R Bullock Jr, K Alapaty, J A Herwehe, J S Kain (2015). A dynamically computed convective time scale for the Kain-Fritsch convective parameterization scheme. Mon Weather Rev, 143(6): 2105–2120
https://doi.org/10.1175/MWR-D-14-00251.1
8 F Chen, J Dudhia (2001). Coupling an advanced land surface-hydrology model with the penn state-ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev, 129(4): 569–585
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
9 A J Clark, W A Gallus Jr, T C Chen (2007). Comparison of the diurnal precipitation cycle in convection-resolving and non-convection resolving mesoscale models. Mon Weather Rev, 135(10): 3456–3473
https://doi.org/10.1175/MWR3467.1
10 J Correia Jr, R W Arritt, C J Anderson (2008). Idealized mesoscale convective system structure and propagation using convective parameterization. Mon Weather Rev, 136(7): 2422–2442
https://doi.org/10.1175/2007MWR2229.1
11 A Dai (2006). Precipitation characteristics in eighteen coupled climate models. J Clim, 19(18): 4605–4630
https://doi.org/10.1175/JCLI3884.1
12 C A Davis, L F Bosart (2002). Numerical simulations of the genesis of Hurricane Diana (1984). Part II: sensitivity of track and intensity prediction. Mon Weather Rev, 130(5): 1100–1124
https://doi.org/10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2
13 J M Fritsch, C F Chappell (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci, 37(8): 1722–1733
https://doi.org/10.1175/1520-0469(1980)037<1722: NPOCDM>2.0.CO;2.
14 A Haidar, B Verma (2017). A genetic algorithm based feature selection approach for rainfall forecasting in sugarcane areas. Computational Intelligence. IEEE
https://doi.org/10.1109/SSCI.2016.7849935.
15 S Hong, S K Park, X Yu (2015). Scheme based optimization of land surface model using a micro-genetic algorithm: assessment of its performance and usability for regional applications. Sci Online Lett Atmos, 11: 129–133
https://doi.org/10.2151/sola.2015-030
16 S Y Hong, Y Noh, J Dudhia (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134(9): 2318–2341
https://doi.org/10.1175/MWR3199.1
17 M J Iacono, J S Delamere, E J Mlawer, M W Shephard, S A Clough, W D Collins (2008). Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res D Atmos, 113(D13): D13103
https://doi.org/10.1029/2008JD009944
18 P A Jiménez, J Dudhia, J F González-Rouco, J Navarro, J P Montávez, E García-Bustamante (2012). A revised scheme for the WRF surface layer formulation. Mon Weather Rev, 140(3): 898–918
https://doi.org/10.1175/MWR-D-11-00056.1
19 Y Q Jin, Y Wang (2001). A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. Int J Remote Sens, 22(16): 3093–3099
https://doi.org/10.1080/01431160152558260
20 C M Kishtawal, S Basu, F Patadia, P K Thapliyal (2003). Forecasting summer rainfall over India using genetic algorithm. Geophys Res Lett, 30(23): 2203
https://doi.org/10.1029/2003GL018504
21 J S Kain, J M Fritsch (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 47(23): 2784–2802
https://doi.org/10.1175/1520-0469(1990)047<2784: AODEPM>2.0.CO; 2.
22 J S Kain (2004). The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43(1): 170–181
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
23 K Krishnakumar (1990). Micro-genetic algorithms for stationary and non-stationary function optimization. In: Intelligent Control and Adaptive Systems, 1196: 289–296
https://doi.org/10.1117/12.969927
24 Y H Lee, S K Park, D E Chang (2006). Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Ann Geophys, 24(12): 3185–3189
https://doi.org/10.5194/angeo-24-3185-2006
25 F Li, J Song, X Li (2018). A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of typhoon Haiyan (2013). Nat Hazards, 92(2): 647–671
https://doi.org/10.1007/s11069-018-3218-y
26 M Li, F Ping, X Tang, S Yang (2019). Effects of microphysical processes on the rapid intensification of Super Typhoon Meranti. Atmos Res, 219: 77–94
https://doi.org/10.1016/j.atmosres.2018.12.031
27 X Li (2013). Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Sci China Earth Sci, 56(2): 270–281
https://doi.org/10.1007/s11430-012-4486-0
28 X Li, Z Pu (2009). Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. J Meteorol Soc Jpn, 87(3): 403–421
https://doi.org/10.2151/jmsj.87.403
29 X Z Liang, M Xu, K E Kunkel, G A Grell, J S Kain (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Clim, 20(20): 5201–5207
https://doi.org/10.1175/JCLI4306.1
30 Y Lin, R D Farley, H D Orville (1983). Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol, 22(6): 1065–1092
https://doi.org/10.1175/1520-0450(1983)022<1065: BPOTSF>2.0.CO;2.
31 L Lou, X Li (2016). Radiative effects on torrential rainfall during the landfall of Typhoon Fitow (2013). Adv Atmos Sci, 33(1): 101–109
https://doi.org/10.1007/s00376-015-5139-y
32 R A J Neggers, A P Siebesma, G Lenderink, A A M Holtslag (2004). An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon Weather Rev, 132(11): 2525–2538
https://doi.org/10.1175/MWR2776.1
33 L Oana, A Spataru (2017). Use of genetic algorithms in numerical weather prediction. In: 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 2016: 456–461
https://doi.org/10.1109/SYNASC.2016.075.
34 F Qiao, X Z Liang (2016). Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J Adv Model Earth Syst, 8(2): 764–785
https://doi.org/10.1002/2015MS000621
35 C P R Sandeep, C Krishnamoorthy, C Balaji (2018). Impact of cloud parameterization schemes on the simulation of Cyclone Vardah using the WRF model. Curr Sci, 115(6): 1143–1153
https://doi.org/10.18520/cs/v115/i6/1143-1153
36 J T Schaefer (1990). The critical success index as an indicator of warning skill. Weather Forecast, 5(4): 570–575
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
37 A P Sims, K Alapaty, S Raman (2017). Sensitivities of summertime mesoscale circulations in the coastal Carolinas to modifications of the Kain-Kritsch cumulus parameterization. Mon Weather Rev, 145(11): 4381–4399
https://doi.org/10.1175/MWR-D-16-0047.1 pmid: 29681661
38 R Singh, C Singh, S P Ojha, A S Kumar, C M Kishtawal, A S K Kumar (2016). Land surface temperature from INSAT-3D imager data: retrieval and assimilation in NWP model. J Geophys Res D Atmospheres, 121(12): 6909–6926
https://doi.org/10.1002/2016JD024752
39 W C Skamarock, J B Klemp (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys, 227(7): 3465–3485
https://doi.org/10.1016/j.jcp.2007.01.037
40 W C Skamarock, J B Klemp, M G Duda, L D Fowler, S H Park, T D Ringler (2012). A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Mon Weather Rev, 140(9): 3090–3105
https://doi.org/10.1175/MWR-D-11-00215.1
41 S Sugimoto, H G Takahashi (2016). Effect of spatial resolution and cumulus parameterization on simulated precipitation over South Asia. Sola, 12(Special Edition): 7–12
https://doi.org/10.2151/sola.12A–002.
42 Y Sun, Z Zhong, W Lu, Y Hu (2014). Why are tropical cyclone tracks over the western north pacific sensitive to the cumulus parameterization scheme in regional climate modeling—a case study for Megi (2010). Mon Weather Rev, 142(3): 1240–1249
https://doi.org/10.1175/MWR-D-13-00232.1
43 G G Szpiro (1997). Forecasting chaotic time series with genetic algorithms. Phys Rev E, 55(3): 2557–2568
https://doi.org/10.1103/PhysRevE.55.2557
44 G Thompson, R M Rasmussen, K Manning (2004). Explicit forecasts of winter precipitation using an improve bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev, 132(2): 519–542
https://doi.org/10.1175/1520-0493(2004)132<0519: EFOWPU>2.0.CO; 2
45 W Wang, N L Seaman (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Weather Rev, 125(2): 252–278
https://doi.org/10.1175/1520-0493(1997)125, 0252: ACSOCP.2.0.CO;2
46 C C Wang (2014). On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: the example of Taiwan. Weather Forecast, 29(4): 788–798
https://doi.org/10.1175/WAF-D-13-00087.1
47 H Xu, B Du (2015). The impact of Typhoon Danas (2013) on the torrential rainfall associated with Typhoon Fitow (2013) in east China. Adv Meteorol, 2015: 1–11
https://doi.org/10.1155/2015/383712
48 H Xu, R Liu, G Zhai, X Li (2016). Torrential rainfall responses of typhoon Fitow (2013) to radiative processes: a three-dimensional WRF modeling study. J Geophys Res D Atmospheres, 121(23): 14127–14136
https://doi.org/10.1002/2016JD025479
49 H Xu, X Li (2017). Torrential rainfall processes associated with a landfall of Typhoon Fitow (2013): a three-dimensional wrf modeling study. J Geophys Res D Atmospheres, 122(11): 6004–6024
https://doi.org/10.1002/2016JD026395
50 M J Yang, Q C Tung (2003). Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J Meteorol Soc Jpn, 81(5): 1163–1183
https://doi.org/10.2151/jmsj.81.1163
51 X Yu, S K Park, Y H Lee, Y S Choi (2013). Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. Sci Online Lett Atmos, 9(0): 36–39
https://doi.org/10.2151/sola.2013-009
52 Z Yu, H Yu, P Chen, C Qian, C Yue (2009). Verification of tropical cyclone related satellite precipitation estimates in mainland China. J Appl Meteorol Climatol, 48(11): 2227–2241
https://doi.org/10.1175/2009JAMC2143.1
53 Z F Yu, Y D Chen, D Wu, G M Chen, X W Bao, Q Z Uamg, R L Yu, L Zhang, J Tang, M Xu, Z J Zeng (2014). Overview of Severe Typhoon Fitow and its operational forecasts. Trop Cyclone Res Rev, 3: 22–34
https://doi.org/10.6057/2014TCRR01.02
54 C Zhang, Y Wang (2018). Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Clim Dyn, 51(9–10): 3613–3633
https://doi.org/10.1007/s00382-018-4099-1
55 Y Zheng, K Alapaty, J A Herwehe, A D Del Genio, D Niyogi (2016). Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon Weather Rev, 144(3): 833–860
https://doi.org/10.1175/MWR-D-15-0005.1
[1] Md. Rezuanul ISLAM, Hiroshi TAKAGI. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay[J]. Front. Earth Sci., 2020, 14(3): 553-567.
[2] Gefei DENG, Yongming SHEN, Changping LI, Jun TANG. Computational investigation on hydrodynamic and sediment transport responses influenced by reclamation projects in the Meizhou Bay, China[J]. Front. Earth Sci., 2020, 14(3): 493-511.
[3] Wanben WU, Wei WANG, Michael E. Meadows, Xinfeng YAO, Wei PENG. Cloud-based typhoon-derived paddy rice flooding and lodging detection using multi-temporal Sentinel-1&2[J]. Front. Earth Sci., 2019, 13(4): 682-694.
[4] Xiba TANG, Fan PING, Shuai YANG, Mengxia LI, Jing PENG. On the rapid intensification for Typhoon Meranti (2016): convection, warm core, and heating budget[J]. Front. Earth Sci., 2019, 13(4): 791-807.
[5] Linna ZHAO, Xuemei BAI, Dan QI, Cheng XING. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China[J]. Front. Earth Sci., 2019, 13(4): 758-777.
[6] Sui HUANG, Shengming TANG, Hui YU, Wenbo XUE, Pingzhi FANG, Peiyan CHEN. Impact of physical representations in CALMET on the simulated wind field over land during Super Typhoon Meranti (2016)[J]. Front. Earth Sci., 2019, 13(4): 744-757.
[7] Baofeng JIAO, Lingkun RAN, Xinyong SHEN. The evolution of hollow symmetric-PV tower during the landfall of Typhoon Mujigae (2015)[J]. Front. Earth Sci., 2019, 13(4): 817-828.
[8] Zhoujie CHENG, Ming WEI, Yaping ZHU, Jie BAI, Xiaoguang SUN, Li GAO. Cloud type identification for a landfalling typhoon based on millimeter-wave radar range-height-indicator data[J]. Front. Earth Sci., 2019, 13(4): 829-835.
[9] Yan-An LIU, Zhibin SUN, Maosi CHEN, Hung-Lung Allen HUANG, Wei GAO. Assimilation of atmospheric infrared sounder radiances with WRF-GSI for improving typhoon forecast[J]. Front. Earth Sci., 2018, 12(3): 457-467.
[10] Lei HUANG, Hui ZHAO, Jiayi PAN, Adam DEVLIN. Remote sensing observations of phytoplankton increases triggered by successive typhoons[J]. Front. Earth Sci., 2017, 11(4): 601-608.
[11] Qikun ZHOU,Guanghai HU,Yongfu SUN,Xiaohui LIU,Yupeng SONG,Lifeng DONG,Changming DONG. Numerical research on evolvement of submarine sand waves in the Northern South China Sea[J]. Front. Earth Sci., 2017, 11(1): 35-45.
[12] Juan LI,Xiaolei ZOU. Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes[J]. Front. Earth Sci., 2014, 8(2): 251-263.
[13] Liang WANG, Xiaodong ZHAO, Yongming SHEN. Coupling hydrodynamic models with GIS for storm surge simulation: application to the Yangtze Estuary and the Hangzhou Bay, China[J]. Front Earth Sci, 2012, 6(3): 261-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed