Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 261-275    https://doi.org/10.1007/s11707-012-0304-4
RESEARCH ARTICLE
Coupling hydrodynamic models with GIS for storm surge simulation: application to the Yangtze Estuary and the Hangzhou Bay, China
Liang WANG1, Xiaodong ZHAO2, Yongming SHEN1()
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China; 2. China-Japan Research Center for Geo-environmental Science, Pioneer Park of Academician, Dalian University, Dalian 116622, China
 Download: PDF(22139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Storm surge is one of the most serious oceanic disasters. Accurate and timely numerical prediction is one of the primary measures for disaster control. Traditional storm surge models lack of accuracy and time effects. To overcome the disadvantages, in this paper, an analytical cyclone model was first added into the Finite-Volume Coastal Ocean Model (FVCOM) consisting of high resolution, flooding and drying capabilities for 3D storm surge modeling. Then, we integrated MarineTools Pro into a geographic information system (GIS) to supplement the storm surge model. This provided end users with a friendly modeling platform and easy access to geographically referenced data that was required for the model input and output. A temporal GIS tracking analysis module was developed to create a visual path from storm surge numerical results. It was able to track the movement of a storm in space and time. MarineTools Pro’ capabilities could assist the comprehensive understanding of complex storm events in data visualization, spatial query, and analysis of simulative results in an objective and accurate manner. The tools developed in this study further supported the idea that the coupled system could enhance productivity by providing an efficient operating environment for accurate inversion or storm surge prediction. Finally, this coupled system was used to reconstruct the storm surge generated by Typhoon Agnes (No. 8114) and simulated typhoon induced-wind field and water elevations of Yangtze Estuary and Hangzhou Bay. The simulated results show good correlation with actual surveyed data. The simple operating interface of the coupled system is very convenient for users, who want to learn the usage of the storm surge model, especially for first-time users, which can save their modeling time greatly.

Keywords storm surge      Finite-Volume Coastal Ocean Model (FVCOM)      temporal geographic information system (GIS)      Yangtze Estuary and Hangzhou Bay      Typhoon Agnes     
Corresponding Author(s): SHEN Yongming,Email:ymshen@dlut.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Liang WANG,Xiaodong ZHAO,Yongming SHEN. Coupling hydrodynamic models with GIS for storm surge simulation: application to the Yangtze Estuary and the Hangzhou Bay, China[J]. Front Earth Sci, 0, (): 261-275.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0304-4
https://academic.hep.com.cn/fesci/EN/Y0/V/I/261
Fig.1  General logical structure of storm surges system
Fig.2  A schematic sketch of data model. The interface data model used Geodatabase within ArcGIS providing easy translation of FVCOM input and output data
No.Field nameField descriptionTypeLengthKeyRemarks (Null)
1IDIndexIntegerYN
2PassTimePass timeDateNN
3UserIDUserIntegerNY
4ErrorError infoStringNY
5LongitudeLongitudeDoubleDefaultNY
6LatitudeLatitudeDoubleDefaultNY
7EVectorEast component of wind vectorDoubleDefaultNY
8NVectorNorth component of wind vectorDoubleDefaultNY
9UcenterEast component of center speedDoubleDefaultNY
10VcenterNorth component of center speedDoubleDefaultNY
11R0Maximum speed radiusDoubleDefaultNY
12PressureCenter pressureDoubleDefaultNY
Tab.1  Structure of the typhoon data for surge model results
Fig.3  Case study region: East China Sea
Gauge stationTime of the highest tideThe highest sea level/mError/mTyphoon No.
ObservedSimulated
Changtu23:00 9/1/19812.452.31-0.148114
Daji00:00 9/2/19812.992.63-0.36
Ganpu02:00 9/2/19814.284.490.21
Tanxu02:00 9/2/19814.144.03-0.11
Wusong01:00 9/1/19812.722.760.04
Zhapu02:00 9/2/19813.663.54-0.12
Zhenhai01:00 9/1/19812.122.11-0.01
Tab.2  Comparison of the observed and simulated values
Fig.4  (a) Map of the East China Sea, including Typhoon Agnes (No. 8114)’s track. The box indicates the zoom shown below. (b) Map of the YE-HB region most affected by Typhoon Agnes, showing names of coastal features (e.g. cities, provincial boundaries and gauge stations)
Fig.5  The validation of Typhoon Agnes wind field. (a) and (b) represent Daji station; (c) and (d) represent Tanxu station
Fig.6  The validation of Typhoon Agnes water elevation and surge setup. (a) and (b) represent Daji station; (c) and (d) represent Tanxu station
Fig.7  Model simulated sea level elevation from 08/30/12:00 (a) to 09/20/00:00 (f) (GMT+ 8 Beijing Mean Time) in 12-hourly snapshots
Fig.8  Display of a spatial point layer model output of sea elevation for simulation time 9/2/1981 00:00:00 pm in the GIS mapping window and Identify tool displays the node ID 16280 at the selected typhoon time point
1 Atkinson G D, Holliday C R (1977). Tropical cyclone minimum sea-level pressure-maximum sustained wind relationship for the western North Pacific. Monthly Weather Review , 105(4): 421-427
doi: 10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2
2 Blumberg A F, Mellor G L (1987). A description of a three-dimensional coastal ocean circulation model. In: Heaps N, ed. Three-Dimensional Coastal Ocean Models 4. American Geophysical Union, Washington D C , 208
3 Cao Y, Zhu J (2000). Numerical simulation of effects on storm-induced water level after contraction in Qiantang Estuary. Journal of Hangzhou Institute of Applied Engineering , 72: 24-29 (in Chinese)
4 Castrogiovanni E M, La Loggia G, Noto L V (2005). Design storm prediction and hydrologic modeling using a web-GIS approach on a free-software platform. Atmospheric Research , 77(1-4): 367-377
5 Chen C, Liu H, Beardsley R C (2003). An unstructured, finite-volume, three dimensional, primitive equation ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology , 20(1): 159-186
doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
6 Chen C, Cowles G, Beardsley R C (2006). An Unstructured Grid, Finite Volume Coastal Ocean Model: FVCOM User Manual, 2nd ed. SMAST/UMASSD Technical Report-06-0602 , 19-35
7 Chen C S, Huang H S, Beardsley R C, Liu H D, Xu Q C, Cowles G (2007). A finite volume numerical approach for coastal ocean circulation studies: comparisons with finite difference models. Journal of Geophysical Research , 772, 112(C03018) ,
doi: 10.1029/2006JC003485:
8 Conner W C, Kraft K H, Harris D L (1957). Empirical methods for forecasting the maximum storm tide due to hurricanes and other tropical storms. Monthly Weather Review , 85(4): 113-116
doi: 10.1175/1520-0493(1957)085<0113:EMFFTM>2.0.CO;2
9 Dietsche D, Hagen S C, Bacopoulos P (2007). Storm surge simulations for hurricane Hugo (1989): on the significance of inundation area. Journal of Waterway Port Coastal and Ocean Engineering-ASCE , 133(3): 183-191
doi: 10.1061/(ASCE)0733-950X(2007)133:3(183)
10 Flather R A (2001). Storm surges. In: Steele J H, Thorpe S A, Turekian K K, eds. Encyclopedia of Ocean Sciences . San Diego: Academic Press, 2882-2892
11 Frank A U (1993). The Use of Geographical Information Systems: the User Interface is the System. Medyckyj-Scott D, Hearnshaw H, eds. Human Factors in Geographical Information Systems , London: Belhaven Press, 3-14
12 Galperin B, Kantha L H, Hassid S, Rosati A (1988). A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the Atmospheric Sciences , 45(1): 55-62
doi: 10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
13 Gemitzi A,Tolikas D (2004). Development of a sharp interface model that simulates coastal aquifer flow with the coupled use of GIS. Hydrogeology Journal , 12(3): 345-356
14 Gould M D (1993). Two Views of the User Interface. Medyckyj-Scott D, Hearnshaw H, eds. Human Factors in Geographical Information Systems . London: Belhaven Press, 101-110
15 Guo Y K, Zhang J S, Zhang L X, Shen Y M (2009). Computational investigation of typhoon-induced storm surge in Hangzhou Bay. China. Estuarine, Coastal and Shelf Science , 85(4): 530-536
16 Harris L D (1959). An interim hurricane storm surge forecasting guide. National Hurricane Research Project 32, US Weather Bureau, Washington D C , 23
17 Holland G J (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review , 108(8): 1212-1218
doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
18 Hu K, Ding P, Ge J (2007). Modeling of storm surge in the coastal waters of Yangtze Estuary and Hangzhou Bay, China. Journal of Coastal Research , S1(50): 527-533
19 Huang H, Chen C, Cowles G W, Winant C D, Beardsley R C, Hedstrom K S, Haidvogel D B (2008). FVCOM validation experiments: comparisons with ROMS for three idealized barotropic test problems. Journal of Geophysical Research-Oceans , 113(C07042):
doi: 10.1029/2007JC004557
20 Hubbert G D, Holland G J, Leslie L M, Manton M J (1991). A Real-Time System for Forecasting Tropical Cyclone Storm Surges. Weather Forecast , 6(1): 86-97
doi: 10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
21 Hubbert G D, McInnes K L (1999). A storm surge inundation model for coastal planning and impact studies. Journal of Coastal Research , 15: 168-185
22 Jain I, Chittibabu P, Agnihotri N, Dube S K, Sinha P C, Rao A D (2007). Numerical storm surge model for India and Pakistan. Natural Hazards , 42(1): 67-73
doi: 10.1007/s11069-006-9060-7
23 Jakobsen F, Madsen H (2004). Comparison and further development of parametric tropical cyclone models for storm surge m odeling. Journal of Wind Engineering and Industrial Aerodynamics , 92(5): 375-391
24 Jelesnianski C P (1966). Numerical computations of storm surge without bottom stress. Monthly Weather Review , 94(6): 379-394
doi: 10.1175/1520-0493(1966)094<0379:NCOSSW>2.3.CO;2
25 Jelesnianski C P (1967). Numerical computations of storms surges with bottom stress. Monthly Weather Review , 95(11): 740-756
doi: 10.1175/1520-0493(1967)095<0740:NCOSSW>2.3.CO;2
26 Jelesnianski C P, Chen J, Shaffer W A (1992). SLOSH: Sea, Lake, and Overland Surges From Hurricanes. NOAA Technical Report NWS 48, 77
27 Kliem N, Nielsen J W, Huess V (2006). Evaluation of a shallow water unstructured mesh model for the North Sea–Baltic Sea. Ocean Model , 15(1-2): 124-136
doi: 10.1016/j.ocemod.2006.06.003
28 Large W G, Pond S (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography , 11(3): 324-336
doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
29 Li C, Chen C, Guadagnoli G, Georgiou I Y (2008). Geometry induced residual eddies in estuaries with curved channel-observations and modeling studies. Journal of Geophysical Research-Oceans , 113( C01005)
doi: 10.1029/2006JC004031
30 Madsen H, Jakobsen F (2004). Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal. Coastal Engineering , 51(4): 277-296
doi: 10.1016/j.coastaleng.2004.03.001
31 McInnes K L, Hubbert G D, Abbs D J, Oliver S E (2002). A numerical modeling study of coastal flooding. Meteorology and Atmospheric Physics , 80(1-4): 217-233
doi: 10.1007/s007030200027
32 McInnes K L, O’Grady J G, Hubbert G D (2009). Modeling sea level extremes from storm surges and wave setup for climate change assessments in Southern Australia. Journal of Coastal Research , 56(2): 1005-1009
33 Mellor G L, Yamada T (1982). Development of a turbulence closure model for geophysical fluid problem. Reviews of Geophysics , 20(4): 851-875
doi: 10.1029/RG020i004p00851
34 Merkel W H, KaushikaR M, Gorman E (2008). NRCS GeoHydro-a GIS interface for hydrologic modelin g. Computers & Geosciences , 34(8): 918-930
35 Naoum S, Tsanis I K, Fullarton M (2005). A GIS pre-processor for pollutant transport modeling. Environmental Modelling & Software , 20(1): 55-68
doi: 10.1016/j.envsoft.2003.12.009
36 Ng S M Y, Wai O W H, Li Y S, Li Z L, Jiang Y W (2009). Integration of a GIS and a complex three-dimensional hydrodynamic, sediment and heavy metal transport numerical model. Advances in Engineering Software , 40(6): 391-401
37 Peng M, Xie L, Pietrafesa J (2006a). A numerical study on hurricane induced storm surge and inundation in Charleston, South Carolina. Journal of Geophysical Research-Oceans , 111(C08017): 22
doi: 10.1029/2004JC002755
38 Peng M, Xie L, Pietrafesa L J (2006b). Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields. Ocean Model , 14(1-2): 81-101
doi: 10.1016/j.ocemod.2006.03.004
39 Powell M D, Houston S H (1998). Surface wind fields of 1995 hurricane Erin, Opal, Luis, Marilyn and Roxanne at landfall. Monthly Weather Review , 126(5): 1259-1273
doi: 10.1175/1520-0493(1998)126<1259:SWFOHE>2.0.CO;2
40 Resio D T, Westerink J J (2008). Modeling the physics of storm surges. Physics Today , 61(9): 33-38
doi: 10.1063/1.2982120
41 Smagorinsky J (1963). General circulation experiments with the primitive equations, I: the basic experiment. Monthly Weather Review , 91(3): 99-164
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
42 Tsanis I K, Boyle S (2001). A 2D hydrodynamic/pollutant transport GIS mo del. Advances in Engineering Software , 32(5): 353-361
43 Tsanis I K, Gad M A (2001). A GIS precipitation method for analysis of storm kinematics. Environmental Modeling & Software , 16(3): 273-281
44 Wang J Y, Chai F (1989). Nonlinear interaction between astronomical tides and storm surges at Wusong Tidal Station. Chinese Journal of Oceanology and Limnology , 7(2): 135-142
doi: 10.1007/BF02842749
45 Weisberg R H, Zheng L Y (2006a). A simulation of the hurricane Charley storm surge and its breach of North Captiva Island. Florida Scientist , 69: 152-165
46 Weisberg R H, Zheng L Y (2006b). Hurricane storm surge simulations for Tampa Bay. Estuaries Coasts , 29(6A): 899-913
47 Weisberg R H, Zheng L Y (2008). Hurricane storm surge simulations comparing three dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region. Journal of Geophysical Research-Oceans , 113(C1201)
doi: 10.1029/2008JC005115
48 Yin B S, Xu Z H, Huang Y, Lin X (2009). Simulating a typhoon storm surge in the East Sea of China using coupled model. Progress in Natural Science , 19(1): 65-71
49 Zampato L, Umgiesser G, Zecchetto S (2006). Storm surge in the Adriatic Sea: observational and numerical diagnosis of an extreme event. Advances in Geosciences , 7: 371-378
doi: 10.5194/adgeo-7-371-2006
[1] Hiroshi TAKAGI, Atsuhei TAKAHASHI. Short-fetch high waves during the passage of 2019 Typhoon Faxai over Tokyo Bay[J]. Front. Earth Sci., 2022, 16(1): 206-219.
[2] Md. Rezuanul ISLAM, Hiroshi TAKAGI. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay[J]. Front. Earth Sci., 2020, 14(3): 553-567.
[3] Yuexia ZHANG, Jing GUO, Zhumei CHE. Discussion on evaluating the vulnerability of storm surge hazard bearing bodies in the coastal areas of Wenzhou[J]. Front. Earth Sci., 2015, 9(2): 300-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed