Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (1) : 23-37    https://doi.org/10.1007/s11707-020-0847-8
RESEARCH ARTICLE
Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China
Jiancheng QIN1,2,3, Buda SU1(), Hui TAO1, Yanjun WANG4, Jinlong HUANG4, Tong JIANG1,4()
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Institute for Disaster Risk Management/School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
 Download: PDF(3310 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Climate change significantly affects the environmental and socioeconomic conditions in northwest China. Here we evaluate the ability of five general circulation models (GCMs) from 6th phase of the Coupled Model Inter-comparison Project (CMIP6) to reproduce regional temperature and precipitation over northwest China from 1961 to 2014, and project the future temperature and precipitation during 2021 to 2100 under SSPs-RCPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5). The results show that the CMIP6 models can simulate temperature better than precipitation. Projections show that the annual mean temperature will further increase under different SSPs-RCPs scenarios in the 21st century. Future climate changes in the near-term (2021–2040), mid-term (2041–2060) and long-term (2081–2100) are analyzed relative to the reference period (1995–2014). In the long term, warming will be significantly higher than the near and mid-terms. In the long term, annual mean temperature will increase by 1.4°C, 1.9°C, 3.3°C, 5.5°C, 2.7°C, 3.8°C and 6.0°C under SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5, respectively. Spatially, warming in the Junggar Basin will be higher than those in the Tarim Basin. Seasonally, the maximum warming zone will be in the mountainous areas of Tarim Basin during spring and autumn, in the southern basin during winter, and in the east during summer. Precipitation shows an increasing trend under different SSPs-RCPs in the 21st century. In the long term, increase in precipitation will be significantly higher than in the near and mid-terms. Increase in annual precipitation in the long term will be 4.1% under SSP1-1.9, 13.9% under SSP1-2.6, 28.4% under SSP2-4.5, 35.2% under SSP3-7.0, 6.9% under SSP4-3.4, 8.9% under SSP4-6.0, and 27.3% under SSP5-8.5 relative to the reference period of 1995–2014. Spatially, precipitation increase will be higher in the south than the north, especially higher in mountainous regions than the basin under SSP2-4.5, SSP3-7.0, and SSP5-8.5. Seasonally, highest increase can be expected for winter, followed by spring, with significant increase in mountainous regions of southern Tarim Basin. Summer precipitation will reduce in Tian Shan and basins but will significantly increase in the northern margin of the Kunlun Mountain.

Keywords temperature      precipitation      projection      SSPs-RCPs      northwest China     
Corresponding Author(s): Buda SU,Tong JIANG   
Online First Date: 22 March 2021    Issue Date: 19 April 2021
 Cite this article:   
Jiancheng QIN,Buda SU,Hui TAO, et al. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China[J]. Front. Earth Sci., 2021, 15(1): 23-37.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0847-8
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I1/23
Fig.1  Location and spatial patterns of temperature and precipitation of the study area.
Name Modeling group Original resolution (lon × lat)
CanESM5 Centre for Climate Modeling and Analysis, Canada 2.81° × 2.81°
CNRM-ESM2-1 National Centre for Scientific Experiments,France 1.25° × 2.5°
IPSL-CM6A-LR Institute Pierre Simon Laplace, France 1.25° × 2.5°
MIROC6 Atmosphere and Ocean Research Institute, Japan 1.4° × 1.4°
MPI-ESM2-0 Planck Meteorological Institute, Germany 0.93° × 0.93°
Tab.1  List of CMIP6 models used in this study
CanESM5 CNRM-ESM2-1 IPSL-CM6A-LR MIROC6 MPI-ESM2-0
Temperature Original outputs 0.77 0.89 0.85 0.84 0.91
Bias-corrected 0.97 0.99 0.96 0.98 0.99
Precipitation Original outputs 0.68 0.67 0.59 0.47 0.66
Bias-corrected 0.98 0.95 0.98 0.99 0.99
Tab.2  Correlation coefficient of CMIP6 model outputs and observations
Fig.2  Spatial patterns of observed and simulated temperature and precipitation during the reference period (1961–2014).
Fig.3  Variations of temperature and precipitation by the observation and multi-model ensemble mean during baseline period (1961–2014).
Fig.4  Taylor diagram of (a) temperature and (b) precipitation for CMIP6 models compared to observations (1961–2014).
Fig.5  Temporal changes in annual mean temperature during 1961-2100 under SSPs-RCPs (relative to 1995–2014).
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-3.4 SSP4-6.0 SSP5-8.5
2021-2040 1.5 1.5 1.6 1.7 1.5 1.7 1.8
2041-2060 1.6 2.0 2.6 3.0 2.3 2.7 3.4
2081-2100 1.4 1.9 3.3 5.5 2.7 3.8 6.0
Tab.3  Temperature changes with relative to 1995-2014 under SSPs-RCPs (°C)
Fig.6  Spatial patterns of temperature changes in periods of 2021-2040, 2041-2060 and 2081-2100 relative to the reference period (1995–2014) under SSP1-1.9, SSP2-4.5, and SSP5-8.5.
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-3.4 SSP4-6.0 SSP5-8.5
Spring 2021–2040 1.6 1.6 1.8 1.9 1.8 2.0 2.2
2041–2060 1.7 2.2 3.2 4.0 2.5 3.4 4.2
2081–2100 1.6 2.1 3.3 5.1 2.8 3.7 5.7
Summer 2021–2040 2.1 2.0 2.2 2.2 2.2 2.2 2.5
2041–2060 2.2 2.6 3.6 4.3 3.2 3.9 5.1
2081–2100 2.1 2.6 4.0 5.9 3.3 4.6 6.7
Autumn 2021–2040 1.8 1.8 2.0 2.2 1.9 2.0 2.3
2041–2060 1.9 2.3 3.5 4.7 3.0 3.7 5.1
2081–2100 1.8 2.4 3.9 6.2 3.2 4.2 6.7
Winter 2021–2040 1.5 1.5 1.4 1.8 1.5 1.6 1.6
2041–2060 1.6 1.9 2.7 4.1 2.5 3.2 4.3
2081–2100 1.3 1.8 3.1 5.7 2.7 3.6 6.1
Tab.4  Seasonal temperature change in periods of 2021-2040, 2041-2060 and 2081-2100 relative to the reference period (1995-2014) under SSPs-RCPs (°C)
Fig.7  Spatial patterns of summer temperature change in periods of 2021-2040, 2041-2060 and 2081-2100 relative to the reference period (1995-2014) under SSP1-1.9, SSP2-4.5 and SSP5-8.5.
Fig.8  Temporal changes of annual averaged precipitation during 1961-2100 under SSPs-RCPs (relative to 1995-2014)
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-3.4 SSP4-6.0 SSP5-8.5
2021–2040 3.9 11.0 14.2 16.8 0.3 0.9 6.7
2041–2060 8.6 13.5 19.4 25.5 2.7 6.2 14.4
2081–2100 4.1 13.9 28.4 35.2 6.9 8.9 27.3
Tab.5   Percentage change of annual precipitation in the 21st century under SSPs-RCPs with relative to 1995-2014 (%).
Fig.9  Spatial patterns of precipitation change in periods of 2021–2040, 2041–2060 and 2081–2100 relative to the reference period (1995–2014) under SSP1-1.9, SSP2-4.5, and SSP3-7.0.
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-3.4 SSP4-6.0 SSP5-8.5
Spring 2021–2040 7.7 21.2 27.8 30.6 2.5 2.3 13.1
2041–2060 11.0 22.6 30.4 38.7 5.9 8.7 27.5
2081–2100 8.5 23.0 47.0 60.8 11.8 16.0 49.3
Summer 2021–2040 0.1 5.1 5.5 5.0 -1.9 -1.1 -0.4
2041–2060 3.6 4.3 6.5 6.9 -1.7 1.3 2.3
2081–2100 0.2 8.5 14.9 10.9 2.6 1.3 6.3
Autumn 2021–2040 8.4 7.2 13.1 19.8 5.7 4.0 10.6
2041–2060 8.3 15.0 21.4 26.3 3.7 6.9 13.6
2081–2100 5.8 11.1 25.4 35.7 8.9 10.8 27.4
Winter 2021–2040 18.3 39.4 44.0 56.0 7.5 13.7 35.6
2041–2060 25.8 40.2 57.7 73.2 19.0 22.6 50.6
2081–2100 23.4 39.7 78.0 122.3 27.4 42.8 104.8
Tab.6  Seasonal precipitation changes in periods of 2021-2040, 2041-2060 and 2081-2100 relative to the reference period (1995-2014) under SSPs-RCPs. (%)
Fig.10  Spatial patterns of winter precipitation changes in periods of 2021-2040, 2041-2060 and 2081-2100 relative to the reference period (1995–2014) under SSP1-1.9, SSP2-45 and SSP3-7.0.
Fig.11  Spatial patterns of summer precipitation changes in periods of 2021-2040, 2041-2060 and 2081-2100 relative to the reference period (1995–2014) under SSP1-1.9, SSP2-4.5 and SSP3-7.0.
1 F Chen, W Huang, L Jin, J Chen, J Wang (2011). Spatiotemporal precipitation variations in the arid central Asia in the context of global warming. Sci China Earth Sci, 54(12): 1812–1821
https://doi.org/10.1007/s11430-011-4333-8
2 Y Chen, A Liu, X Cheng (2020). Quantifying economic impacts of climate change under nine future emission scenarios within CMIP6. Sci Total Environ, 703(10): 134950
https://doi.org/10.1016/j.scitotenv.2019.134950 pmid: 31744695
3 D Cheng, X Wang (2006). Changing trend of drought and drought disaster in northwest China and countermeasures. Earth Sci Frontiers, 13(1): 3–14 (in Chinese)
4 V Eyring, S Bony, G A Meehl, C A Senior, B Stevens, R J Stouffer, K E Taylor (2016). Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 9(5): 1937–1958
https://doi.org/10.5194/gmd-9-1937-2016
5 S Fang, J Yan, M Che, Y Zhu, Z Liu, H Pei, H Zhang, G Xu, X Lin (2013). Climate change and the ecological responses in Xinjiang, China: model simulations and data analyses. Quat Int, 311: 108–116
https://doi.org/10.1016/j.quaint.2013.08.032
6 J He, M Zhang, P Wang, H Xin, X Huang (2011). New progress of the study on climate change in Xinjiang. Arid Zone Research, 28(3): 499–505 (in Chinese)
7 S M Hsiang, K C Meng, M A Cane (2011). Civil conflicts are associated with the global climate. Nature, 476(7361): 438–441
https://doi.org/10.1038/nature10311 pmid: 21866157
8 R Hu, Z Fan, Y Wang, Q Yang, Y Huang (2001). Assessment about the impact of climate change on environmental in Xinjiang since the recent 50 years. Arid land geography, 24 (2):97–103 (in Chinese)
9 Z Hu, S Yang, R Wu (2003). Long-term climate variations in China and global warming signals. J Geophys Res, 108 (19) Doi: 10.1029
10 M Hulme (1996). Recent climatic change in the world’s drylands. Geophys Res Lett, 23(1): 61–64
https://doi.org/10.1029/95GL03586
11 X Gao, Y Shi, D Zhang, J Wu, F Giorgi, Z Ji, Y Wang (2012). Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res, 52: 213–226
https://doi.org/10.3354/cr01084
12 F Giorgi, W Hurrell, R Marinucci, M Beniston (1997). Elevation dependency of the surface climate change signal. J Clim, 10(2): 288–296
https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2
13 IPCC (2013). Climate Change 2013: the Physical Science Basis. Cambridge and New York: Cambridge University Press
14 D Jiang, M Su, R Wei (2009). Variation and projection of drought and wet conditions in Xinjiang. China J Atmos Sci, 1(33): 90–98 (in Chinese)
15 M La, Y Zhou, H Zhu, X Dong (2019). On the precipitation changes over Xinjiang in summers from 2006 to 2035 through the dynamical downscaling of CMIP5 model results. J Meteorol Sci, 3(39): 413–420 (in Chinese)
16 B Li, Y Chen, Z Chen, W Li (2012a). Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quat Int, 282(19): 87–95
https://doi.org/10.1016/j.quaint.2012.06.005
17 H Li, J Sheffield, E Wood F (2010a). Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res-OCEANS, 115(D10): D10101
https://doi.org/10.1029/2009JD012882
18 L Li, L Bai, Y Yao, Q Yang (2012b). Projection of Climate Change in Xinjiang under IPCC SRES. Resources Science, 34(3): 602–612 (in Chinese)
19 Z Li, Y Chen, Y Shen, Y Liu, S Zhang (2013). Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour Res, 49(4): 2205–2212
https://doi.org/10.1002/wrcr.20202
20 Q Li, W Dong, W Li, X Gao, P Lones, J Kennedy, D Parker (2010b). Assessment of the uncertainties in temperature change in China during the last century. Chin. Sci. Bull, 55: 1974–1982
21 Liu Y, Huang G, Huang R (2011). Inter-decadal variability of summer rainfall in Eastern China detected by the Lepage test. Theor Appl Climatol, 106(3–4): 481–488
22 P Lin, Z Yu, H Liu, Y Yu, Y Li, J Jiang, W Xue, K Chen, Q Yang, B Zhao, J Wei, M Ding, Z Sun, Y Wang, Y Meng, W Zheng, J Ma (2020). LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv Atmos Sci, 37(3): 239–249
https://doi.org/10.1007/s00376-019-9208-5
23 Y Ma, W Chen, R Feng, J Liang, Y Liang (2012). Interannual and interdecadal variations of precipitation over eastern China during Meiyu season and their relationships with the atmospheric circulation and SST. Chin J Atmos Sci, 2: 397–410 (in Chinese)
24 M Meinshausen, J Nicholls, J Lewis, J Gidden, E Vogel, M Freund, U Beyerle, C Gessner, A Nauels, N Bauer, J Canadell, S Daniel, A John, B Krummel, G Luderer, N Meinshausen, A Montzka, J Rayner, S Reimann, J Smith, M van den Berg, G J M Velders, M K Vollmer, R H J Wang (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev, 13(8): 3571–3605
https://doi.org/10.5194/gmd-13-3571-2020
25 Y Na, Q Fu, C Kodama (2020). Precipitation probability and its future changes from a global cloud-resolving model and CMIP6 simulations. J Geophys Res Atmos, 125(5)
https://doi.org/10.1029/2019JD031926
26 S Piao, P Ciais, Y Huang, Z Shen, S Peng, J Li, L Zhou, H Liu, Y Ma, Y Ding, P Friedlingstein, C Liu, K Tan, Y Yu, T Zhang, J Fang (2010). The impacts of climat e change on water resources and agriculture in China. Nature, 467(7311): 43–51
https://doi.org/10.1038/nature09364 pmid: 20811450
27 Y Shi, X Gao, J Wu, F Giorgi, W Dong (2010). Simulation of the changes in snow cover over china under global warming by a high resolution RCM. Journal of Glaciology and Geocryology, 32(2): 215–222 (in Chinese)
28 Y Shi, Y Shen, R Hu (2003). Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China. Journal of Glaciology and Geology, 24 (3): 219–226(in Chinese)
29 Y Shi, Y Shen, E Kang, D Li, Y Ding, G Zhang, R Hu (2007). Recent and future climate change in northwest China. Clim Change, 80(3–4): 379–393
https://doi.org/10.1007/s10584-006-9121-7
30 B Su, J Huang, M Gemmer, D Jian, H Tao, D Jiang, C Zhao (2016). Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmo Res, (178–179):138–149.
31 H Tao, T Fischer, B Su, W Mao, T Jiang, K Fraedrich (2017). Observed changes in maximum and minimum temperatures in Xinjiang autonomous region, China. Int J Climatol, 37(15): 5120–5128
https://doi.org/10.1002/joc.5149
32 D Tian, Y Guo, W Dong (2015). Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv Atmos Sci, 32(4): 487–496
https://doi.org/10.1007/s00376-014-4102-7
33 K B Tokarska, M B Stolpe, S Sippel, E M Fischer, C J Simth (2020). Past warming trend constrains future warming in CMIP6 models. Sci Adv, 6(12)
34 Y Wang, X Yang, M Zhang, L Zhang, X Yu, L Ren, Y Liu, S Jiang, F Yuan (2019). Projected effects of climate change on future hydrological regimes in the Upper Yangtze River Basin, China. Adv Meteorol, 2019: 1–14
https://doi.org/10.1155/2019/1545746
35 F Y Wei (1999). Modern climate statistical diagnostics and prediction technologies. Beijing: China Meteorological Press (in Chinese)
36 J Wu, X Gao (2013). A gridded daily observation dataset over China region and comparison with the other datasets. Chinese. J Geophys-ch, 56(4): 1102–1111(in Chinese)
37 C Xu, Y Xu (2012). The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos Ocean Sci Lett, 5(6): 527–533
https://doi.org/10.1080/16742834.2012.11447042
38 X Yang, E Wood, J Sheffield, L Ren, M Zhang, Y Wang (2018). Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. J Hydrol (Amst), 3(19): 609–623
39 E Yu, J Sun, G Lv, H Chen, W Xiang (2015). High-resolution projection of future climate change in the northwestern arid regions of China. Arid Land Geography, 38(3): 429–437 (in Chinese)
40 X Yu, S Li, Y Zhou, J Yao, H Li (2017). Projected summer precipitation over Xinjiang by Multi-CMIP5 models in the next 30 years. Desert and Oasis Meteorology, 11(11): 53–62 (in Chinese)
41 Y Zhang, G Tuerxunban, L Su, Q Liu (2019). Spatial and temporal characteristics of climate change at different altitudes in Xinjiang in the past 60 years. Arid land geography, 42(4): 822–829 (in Chinese)
42 Y Zhao, A Huang, Y Zhou, Q Yang (2016). The impacts of the summer plateau monsoon over the Tibetan Plateau on the rainfall in the Tarim Basin, China. Theor Appl Climatol, 126(1–2): 265–272
https://doi.org/10.1007/s00704-015-1576-x
43 Y Zhao, M Wang, A Huang, H Li, W Huo, Q Yang (2014). Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor Appl Climatol, 116(3–4): 403–411
https://doi.org/10.1007/s00704-013-0948-3
44 T Zhou, R Yu (2006). Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J Climate, 19: 5843–5858
45 J Zhou, Y Wang, B Su, A Wang, H Tao, J Zhai, Z W Kundzewicz, T Jiang (2020). Choice of potential evapotranspiration formulas influences drought assessment: a case study in China. Atmos Res, 242: 104979
https://doi.org/10.1016/j.atmosres.2020.104979
46 B Zhu, L Xue, G Wei, L Zhang, X Chen (2019). CMIP5 projected changes in temperature and precipitation in arid and humid basins. Theor Appl Climatol, 136(3–4): 1133–1144
https://doi.org/10.1007/s00704-018-2542-1
[1] Baofu LI, Jili ZHENG, Xun SHI, Yaning CHEN. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China[J]. Front. Earth Sci., 2020, 14(3): 568-577.
[2] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[3] Linan YUAN, Jingjuan LIAO. Exploring the influence of various factors on microwave radiation image simulation for Moon-based Earth observation[J]. Front. Earth Sci., 2020, 14(2): 430-445.
[4] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[5] Shiyong YAN, Ke SHI, Yi LI, Jinglong LIU, Hongfeng ZHAO. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China[J]. Front. Earth Sci., 2020, 14(1): 1-12.
[6] Linna ZHAO, Xuemei BAI, Dan QI, Cheng XING. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China[J]. Front. Earth Sci., 2019, 13(4): 758-777.
[7] Jia ZHU, Jiong SHU, Xing YU. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm[J]. Front. Earth Sci., 2019, 13(4): 721-732.
[8] Peiyan CHEN, Hui YU, Ming XU, Xiaotu LEI, Feng ZENG. A simplified index to assess the combined impact of tropical cyclone precipitation and wind on China[J]. Front. Earth Sci., 2019, 13(4): 672-681.
[9] Yiannis KAMARIANAKIS, Xiaoxiao LI, B. L. TURNER II, Anthony J. BRAZEL. On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ[J]. Front. Earth Sci., 2019, 13(3): 445-463.
[10] Yaoping CUI, Xiangming XIAO, Russell B DOUGHTY, Yaochen QIN, Sujie LIU, Nan LI, Guosong ZHAO, Jinwei DONG. The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains[J]. Front. Earth Sci., 2019, 13(2): 290-302.
[11] Xuerongzi HUANG, Dashan WANG, Yu LIU, Zhizhou FENG, Dagang WANG. Evaluation of extreme precipitation based on satellite retrievals over China[J]. Front. Earth Sci., 2018, 12(4): 846-861.
[12] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[13] Qianfeng WANG, Jingyu ZENG, Song LENG, Bingxiong FAN, Jia TANG, Cong JIANG, Yi HUANG, Qing ZHANG, Yanping QU, Wulin WANG, Wei SHUI. The effects of air temperature and precipitation on the net primary productivity in China during the early 21st century[J]. Front. Earth Sci., 2018, 12(4): 818-833.
[14] Kazuyoshi SUZUKI, Milija ZUPANSKI. Uncertainty in solid precipitation and snow depth prediction for Siberia using the Noah and Noah-MP land surface models[J]. Front. Earth Sci., 2018, 12(4): 672-682.
[15] Yanhong LI, Mingliang ZHAO, Fadong LI. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake[J]. Front. Earth Sci., 2018, 12(3): 611-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed