Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (2) : 462-478    https://doi.org/10.1007/s11707-019-0778-4
REVIEW ARTICLE
Review of drought impacts on carbon cycling in grassland ecosystems
Tianjie LEI1,2, Jie FENG1,2, Cuiying ZHENG1,2, Shuguang LI1,2, Yang WANG1,2, Zhitao WU3, Jingxuan LU1,2, Guangyuan KAN1,2, Changliang SHAO4,5, Jinsheng JIA1,2(), Hui CHENG1,2,6()
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China
2. China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
3. Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
4. National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
5. Department of Geography/CGCEO, Michigan State University, East Lansing, MI 48823, USA
6. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
 Download: PDF(853 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Grasslands play a key role in both carbon and water cycles. In semi-arid and arid grassland areas, the frequency and intensity of droughts are increasing. However, the influence of a drought on grassland carbon cycling is still unclear. In this paper, the relationship between drought and grassland carbon cycling is described from the perspective of drought intensity, frequency, duration, and timing. Based on a large amount of literature, we determined that drought is one of the most prominent threats to grassland carbon cycling, although the impacts of different drought conditions are uncertain. The effects of a drought on grassland carbon cycling are more or less altered by drought-induced disturbances, whether individually or in combination. Additionally, a new conceptual model is proposed to better explain the mechanism of droughts on grassland carbon cycling. At present, evaluations of the effects of droughts on grassland carbon cycling are mainly qualitative. A data fusion model is indispensable for evaluating the fate of carbon cycling in a sustainable grassland system facing global change. In the future, multi-source data and models, based on the development of single and multiple disturbance experiments at the ecosystem level, can be utilized to systematically evaluate drought impacts on grassland carbon cycling at different timescales. Furthermore, more advanced models should be developed to address extreme drought events and their consequences on energy, water, and carbon cycling.

Keywords drought      carbon cycling      grasslands      conceptual model      interactive mechanisms      data fusion     
Corresponding Author(s): Jinsheng JIA,Hui CHENG   
Online First Date: 17 January 2020    Issue Date: 21 July 2020
 Cite this article:   
Tianjie LEI,Jie FENG,Cuiying ZHENG, et al. Review of drought impacts on carbon cycling in grassland ecosystems[J]. Front. Earth Sci., 2020, 14(2): 462-478.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0778-4
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I2/462
Fig.1  Schematic of the relation between grassland carbon cycling before, during and after a drought, with the timescales being relevant to the responses and impacts (Modified From Van der Molen et al., 2011).
Fig.2  Drought impacts on terrestrial ecosystem productivity (Note: “↑” and “↓” represent increases and decreases, respectively).
Fig.3  The effects of GPP, soil temperature, and soil moisture on soil respiration.
Fig.4  Schematic of interactive mechanisms between droughts and grassland ecosystems.
1 B S Acharya, J Rasmussen, J Eriksen (2012). Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agric Ecosyst Environ, 153(24): 33–39
https://doi.org/10.1016/j.agee.2012.03.001
2 Z Ali, I Hussain, M Faisal, M Nazir, M A Moemen, T Hussain, S Shamsuddin (2017). A novel multi-Scalar drought index for monitoring drought: the standardized precipitation temperature index. Water Resour Manage, 31(15): 4957–4969
https://doi.org/10.1007/s11269-017-1788-1
3 M Allaby (2009). Grasslands. New York: Infobase Publishing
4 M C Amézquita, E Murgueitio, M Ibrahim, B Ramírez(2010). Carbon sequestration in pasture and silvopastoral systems compared with native forests in ecosystems of tropical America. Grassland carbon sequestration: management, policy and economics, 11: 153–161
5 W R L Anderegg, C Schwalm, F Biondi, J J Camarero, G Koch, M Litvak, K Ogle, J D Shaw, E Shevliakova, A P Williams, A Wolf, E Ziaco, S Pacala (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247): 528–532
https://doi.org/10.1126/science.aab1833 pmid: 26228147
6 L C Andresen, M T Domínguez, S Reinsch, A R Smith, I K Schmidt, P Ambus, C Beier, P Boeckx, R Bol, G de Dato, B A Emmett, M Estiarte, M H Garnett, G Kröel-Dulay, S L Mason, C S Nielsen, J Peñuelas, A Tietema (2018). Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under longterm climate change manipulation. Methods Ecol Evol, 9(4): 866–880
https://doi.org/10.1111/2041-210X.12963
7 T A Aseeva, G S Karacheva, I V Lomakina, Z S Ruban (2018). Forming the productivity of spring and winter wheat in the conditions of the middle priamurye region. Russ Agric Sci, 44(2): 113–117
https://doi.org/10.3103/S1068367418020027
8 D Astiani, L M Burhanuddin Curran, M Taherzadeh, Mujiman, M Hatta, W Pamungkas, E Gusmayanti (2018). Fire-driven biomass and peat carbon losses and post-fire soil CO2 emission in a west kalimantan peatland forest. J Trop For Sci, 30(4): 570–575
9 D Baldocchi (2011). The grass response. Nature, 476(7359): 160–161
https://doi.org/10.1038/476160a pmid: 21833081
10 J Balogh, S Fóti, K Pintér, S Burri, W Eugster, M Papp, Z Nagy (2015). Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil, 388(1–2): 157–173
https://doi.org/10.1007/s11104-014-2314-3
11 R Battisti, P C Sentelhas (2017). Improvement of soybean resilience to drought through deep root system in Brazil. Agron J, 109(4): 1612–1622
https://doi.org/10.2134/agronj2017.01.0023
12 J M Bloor, R D Bardgett (2012). Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst, 14(3): 193–204
https://doi.org/10.1016/j.ppees.2011.12.001
13 E N J Brookshire, T Weaver (2015). Long-term decline in grassland productivity driven by increasing dryness. Nat Commun, 6(1): 1–7
https://doi.org/10.1038/ncomms8148 pmid: 25972300
14 A Canarini, L P Kiær, F A Dijkstra (2017). Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis. Soil Biol Biochem, 112: 90–99
https://doi.org/10.1016/j.soilbio.2017.04.020
15 D Caracciolo, E Istanbulluoglu, L V Noto, S L Collins (2016). Mechanisms of shrub encroachment into northern chihuahuan desert grasslands and impacts of climate change investigated using a cellular automata model. Adv Water Resour, 91: 46–62
https://doi.org/10.1016/j.advwatres.2016.03.002
16 M Carlsson, M Merten, M Kayser, J Isselstein, N Wrage-Mönnig (2017). Drought stress resistance and resilience of permanent grasslands are shaped by functional group composition and N fertilization. Agric Ecosyst Environ, 236: 52–60
https://doi.org/10.1016/j.agee.2016.11.009
17 D Chen, X Deng, G Jin, A Samie, Z Li (2017). Land-use-change induced dynamics of carbon stocks of the terrestrial ecosystem in Pakistan. Phys Chem Earth Parts ABC, 101: 13–20
https://doi.org/10.1016/j.pce.2017.01.018
18 G Chen, H Tian, C Zhang, M Liu, W Ren, W Zhu, A H Chappelka, S A Prior, G B Lockaby (2012). Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim Change, 114(2): 379–397
https://doi.org/10.1007/s10584-012-0410-z
19 E E Cleland, U M Goodale (2019). Co-limitation by nitrogen and water constrains allocation response to drought in deciduous and evergreen shrubs in a semi-arid ecosystem. Plant Ecol, 220(2): 213–225
https://doi.org/10.1007/s11258-018-0843-1
20 R T Conant (2010). Challenges and opportunities for carbon sequestration in grassland systems. In Integrated Crop Management; FAO: Rome, Italy, 1–67
21 M D Coupe, J Stacey, J F Cahill Jr (2009). Limited effects of above-and belowground insects on community structure and function in a species-rich grassland. J Veg Sci, 20(1): 121–129
https://doi.org/10.1111/j.1654-1103.2009.05506.x
22 J M Craine, E Towne, D Tolleson, J B Nippert (2013). Precipitation timing and grazer performance in a tallgrass prairie. Oikos, 122(2): 191–198
https://doi.org/10.1111/j.1600-0706.2012.20400.x
23 M A C Cuny, J Gendry, J Hernández-Cumplido, B Benrey (2018). Changes in plant growth and seed production in wild lima bean in response to herbivory are attenuated by parasitoids. Oecologia, 187(2): 447–457
https://doi.org/10.1007/s00442-018-4119-1 pmid: 29594614
24 E Daly, A C Oishi, A Porporato, G G Katul (2008). A stochastic model for daily subsurface CO2 concentration and related soil respiration. Adv Water Resour, 31(7): 987–994
https://doi.org/10.1016/j.advwatres.2008.04.001
25 M Dias, W Brüggemann (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48(1): 96–102
https://doi.org/10.1007/s11099-010-0013-8
26 J M Diez, C M D’Antonio, J S Dukes, E D Grosholz, J D Olden, C J Sorte, D M Blumenthal, B A Bradley, R Early, I Ibáñez, S J Jones, J J Lawler, L P Miller (2012). Will extreme climatic events facilitate biological invasions? Front Ecol Environ, 10(5): 249–257
https://doi.org/10.1890/110137
27 D Han, G Wang, T Liu, B L Xue, G Kuczera, X Xu (2018). Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. J Hydrol (Amst), 563: 766–777
https://doi.org/10.1016/j.jhydrol.2018.06.048
28 M Dubois, H Claeys, L Van den Broeck, D Inzé (2017). Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant Cell Environ, 40(2): 180–189
https://doi.org/10.1111/pce.12809 pmid: 27479938
29 C Dulamsuren, M Klinge, B Bat-Enerel, T Ariunbaatar, D Tuya (2019). Effects of forest fragmentation on organic carbon pool densities in the Mongolian forest-steppe. For Ecol Manage, 433: 780–788
https://doi.org/10.1016/j.foreco.2018.10.054
30 R A Eagle, C Risi, J L Mitchell, J M Eiler, U Seibt, J D Neelin, G Li, A K Tripati (2013). High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proc Natl Acad Sci USA, 110(22): 8813–8818
https://doi.org/10.1073/pnas.1213366110 pmid: 23671087
31 M Ebrahimi, M R Sarikhani, A A S Sinegani, A Ahmadi, S Keesstra (2019). Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena, 174: 371–382
https://doi.org/10.1016/j.catena.2018.11.035
32 S E Evans, M D Wallenstein (2012). Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry, 109(1–3): 101–116
https://doi.org/10.1007/s10533-011-9638-3
33 S Eze, S M Palmer, P J Chapman (2018). Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status. Sci Total Environ, 637-638: 398–407
https://doi.org/10.1016/j.scitotenv.2018.05.032 pmid: 29753228
34 P Falloon, C D Jones, M Ades, K Paul (2011). Direct soil moisture controls of future global soil carbon changes: an important source of uncertainty. Global Biogeochem Cycles, 25(3): GB3010
https://doi.org/10.1029/2010GB003938
35 S Fauset, T R Baker, S L Lewis, T R Feldpausch, K Affum-Baffoe, E G Foli, K C Hamer, M D Swaine (2012). Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett, 15(10): 1120–1129
https://doi.org/10.1111/j.1461-0248.2012.01834.x pmid: 22812661
36 C R Ford, J McGee, F Scandellari, E A Hobbie, R J Mitchell (2012). Long-and short-term precipitation effects on soil CO2 efflux and total belowground carbon allocation. Agric Meteorol, 156: 54–64
https://doi.org/10.1016/j.agrformet.2011.12.008
37 P J Franks, P L Drake, R H Froend (2007). Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ, 30(1): 19–30
https://doi.org/10.1111/j.1365-3040.2006.01600.x pmid: 17177873
38 H Ganjurjav, G Hu, Y Wan, Y Li, L Danjiu, Q Gao (2018). Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau. Ecol Evol, 8(3): 1507–1520
https://doi.org/10.1002/ece3.3741 pmid: 29435228
39 Y Gao, J Xia, Y Chen, Y Zhao, Q Kong, Y Lang (2017). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. J For Res, 28(3): 491–501
https://doi.org/10.1007/s11676-016-0339-6
40 E Gidey, O Dikinya, R Sebego, E Segosebe, A Zenebe (2018). Predictions of future meteorological drought hazard (~ 2070) under the representative concentration path (RCP) 4.5 climate change scenarios in raya, northern ethiopia. Model Earth Syst Environ, 4(2): 475–488
https://doi.org/10.1007/s40808-018-0453-x
41 J K Green, S I Seneviratne, A M Berg, K L Findell, S Hagemann, D M Lawrence, P Gentine (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 565(7740): 476–479
https://doi.org/10.1038/s41586-018-0848-x pmid: 30675043
42 D N Grimstead, A C Reynolds, A M Hudson, N J Akins, J L Betancourt (2016). Reduced population variance in strontium isotope ratios informs domesticated turkey use at Chaco Canyon, New Mmexico, USA. J Archaeol Method Theory, 23(1): 127–149
https://doi.org/10.1007/s10816-014-9228-5
43 L Guo, J Cheng, E Luedeling, S E Koerner, J S He, J Xu, C Gang, W Li, R Luo, C Peng (2017). Critical climate periods for grassland productivity on China’s Loess Plateau. Agric Meteorol, 233: 101–109
https://doi.org/10.1016/j.agrformet.2016.11.006
44 D Han, G Wang, T Liu, B L Xue, G Kuczera, X Xu (2018). Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. J Hydrol (Amst), 563: 766–777
https://doi.org/10.1016/j.jhydrol.2018.06.048
45 H Harde (2017). Scrutinizing the carbon cycle and CO2 residence time in the atmosphere. Global Planet Change, 152: 19–26
https://doi.org/10.1016/j.gloplacha.2017.02.009
46 C W Harper, J M Blair, P A Fay, A K Knapp, J D Carlisle (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob Change Biol, 11(2): 322–334
https://doi.org/10.1111/j.1365-2486.2005.00899.x
47 B He, J Liu, L Guo, X Wu, X Xie, Y Zhang, Z Chen, Z Zhong, Z Chen (2018). Recovery of ecosystem carbon and energy fluxes from the 2003 drought in Europe and the 2012 drought in the United States. Geophys Res Lett, 45(10): 4879–4888
https://doi.org/10.1029/2018GL077518
48 R Heitschmidt, M Haferkamp(2003). Ecological consequences of drought and grazing on grasslands of the Northern Great Plains. Book Chapter, 207–226
49 R Heitschmidt, L Vermeire (2006). Can abundant summer precipitation counter losses in herbage production caused by spring drought? Rangeland Ecol Manag, 59(4): 392–399
https://doi.org/10.2111/05-164R2.1
50 M S Heschel, C Riginos (2005). Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminaceae). Am J Bot, 92(1): 37–44
https://doi.org/10.3732/ajb.92.1.37 pmid: 21652382
51 D Hofer, M Suter, E Haughey, J A Finn, N J Hoekstra, N Buchmann, A Lüscher (2016). Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J Appl Ecol, 53(4): 1023–1034
https://doi.org/10.1111/1365-2664.12694
52 D L Hoover, B M Rogers (2016). Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling. Glob Change Biol, 22(5): 1809–1820
https://doi.org/10.1111/gcb.13161 pmid: 26568424
53 D L Hoover, A K Knapp, M D Smith (2017). Photosynthetic responses of a dominant C4 grass to an experimental heat wave are mediated by soil moisture. Oecologia, 183(1): 303–313
https://doi.org/10.1007/s00442-016-3755-6 pmid: 27757543
54 J Huang, J Zhai, T Jiang, Y Wang, X Li, R Wang, M Xiong, B Su, T Fischer (2018). Analysis of future drought characteristics in china using the regional climate model cclm. Clim Dyn, 50(1–2): 507–525
https://doi.org/10.1007/s00382-017-3623-z
55 L Huang, B He, L Han, J Liu, H Wang, Z Chen (2017). A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci Total Environ, 601–602: 1097–1107
https://doi.org/10.1016/j.scitotenv.2017.05.084 pmid: 28599366
56 M Hussain, T Grünwald, J Tenhunen, Y Li, H Mirzae, C Bernhofer, D Otieno, N Dinh, M Schmidt, M Wartinger, K Owen (2011). Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agric Ecosyst Environ, 141(1–2): 67–76
https://doi.org/10.1016/j.agee.2011.02.013
57 J Ingrisch, S Karlowsky, A Anadon-Rosell, R Hasibeder, A König, A Augusti, G Gleixner, M Bahn (2018). Land use alters the drought responses of productivity and CO2 fluxes in mountain grassland. Ecosystems (NY), 21(4): 689–703
https://doi.org/10.1007/s10021-017-0178-0 pmid: 29899679
58 V Jaksic, G Kiely, J Albertson, R Oren, G Katul, P Leahy, K A Byrne (2006). Net ecosystem exchange of grassland in contrasting wet and dry years. Agric Meteorol, 139(3–4): 323–334
https://doi.org/10.1016/j.agrformet.2006.07.009
59 A Jentsch, J Kreyling, M Elmer, E Gellesch, B Glaser, K Grant, R Hein, M Lara, H Mirzae, S E Nadler, L Nagy, D Otieno, K Pritsch, U Rascher, M Schädler, M Schloter, B K Singh, J Stadler, J Walter, C Wellstein, J Wöllecke, C Beierkuhnlein (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol, 99(3): 689–702
https://doi.org/10.1111/j.1365-2745.2011.01817.x
60 Y W Jeong, S K Choi, Y S Choi, S J Kim (2015). Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics. Renew Energy, 79: 14–19
https://doi.org/10.1016/j.renene.2014.08.041
61 B Jia, Y Wang, Z Xie (2018). Responses of the terrestrial carbon cycle to drought over china: modeling sensitivities of the interactive nitrogen and dynamic vegetation. Ecol Modell, 368: 52–68
https://doi.org/10.1016/j.ecolmodel.2017.11.009
62 H Jia, Y Zhang, S Tian, R M Emon, X Yang, H Yan, T Wu, W Lu, K H M Siddique, T Han (2017). Reserving winter snow for the relief of spring drought by film mulching in northeast China. Field Crops Res, 209: 58–64
https://doi.org/10.1016/j.fcr.2017.04.011
63 Y Jiang, Z Xu, G Zhou, T Liu (2016). Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth. BMC Plant Biol, 16(1): 157–173
https://doi.org/10.1186/s12870-016-0846-9 pmid: 27405416
64 M Jongen, J S Pereira, L M I Aires, C A Pio (2011). The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland. Agric Meteorol, 151(5): 595–606
https://doi.org/10.1016/j.agrformet.2011.01.008
65 O Joos, F Hagedorn, A Heim, A Gilgen, M Schmidt, R Siegwolf, N Buchmann (2010). Summer drought reduces total and litter-derived soil CO2 effluxes intemperate grassland-clues from a 13C litter addition experiment. Biogeosciences, 7(3): 1031–1041
https://doi.org/10.5194/bg-7-1031-2010
66 C M Kallenbach, R T Conant, F Calderón, M D Wallenstein (2019). A novel soil amendment for enhancing soil moisture retention and soil carbon in drought-prone soils. Geoderma, 337: 256–265
https://doi.org/10.1016/j.geoderma.2018.09.027
67 P Kardol, M A Cregger, C E Campany, A T Classen (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91(3): 767–781
https://doi.org/10.1890/09-0135.1 pmid: 20426335
68 S Karlowsky, A Augusti, J Ingrisch, R Hasibeder, M Lange, S Lavorel, M Bahn, G Gleixner (2018). Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. J Ecol, 106(3): 1230–1243
https://doi.org/10.1111/1365-2745.12910 pmid: 29780173
69 M Khalifa, N A Elagib, L Ribbe, K Schneider (2018). Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Sci Total Environ, 624: 790–806
https://doi.org/10.1016/j.scitotenv.2017.12.090 pmid: 29272848
70 D Kim, M I Lee, E Seo (2019). Improvement of soil respiration parameterization in a dynamic global vegetation model and its impact on the simulation of terrestrial carbon fluxes. J Clim, 32(1): 127–143
https://doi.org/10.1175/JCLI-D-18-0018.1
71 R P Kipling, P Virkajärvi, L Breitsameter, Y Curnel, T De Swaef, A M Gustavsson, S Hennart, M Höglind, K Järvenranta, J Minet, C Nendel, T Persson, C Picon-Cochard, S Rolinski, D L Sandars, N D Scollan, L Sebek, G Seddaiu, C F E Topp, S Twardy, J Van Middelkoop, L Wu, G Bellocchi (2016). Key challenges and priorities for modelling European grasslands under climate change. Sci Total Environ, 566–567: 851–864
https://doi.org/10.1016/j.scitotenv.2016.05.144 pmid: 27259038
72 A K Knapp, C Beier, D D Briske, A T Classen, Y Luo, M Reichstein, M D Smith, S D Smith, J E Bell, P A Fay, J L Heisler, S W Leavitt, R Sherry, B Smith, E Weng (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58(9): 811–821
https://doi.org/10.1641/B580908
73 M Kukumägi, I Ostonen, V Uri, H S Helmisaari, A Kanal, O Kull, K Lõhmus (2017). Variation of soil respiration and its components in hemiboreal Norway spruce stands of different ages. Plant Soil, 414(1–2): 265–280
https://doi.org/10.1007/s11104-016-3133-5
74 H Kwon, E Pendall, B E Ewers, M Cleary, K Naithani (2008). Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem. Agric Meteorol, 148(3): 381–391
https://doi.org/10.1016/j.agrformet.2007.09.010
75 G A Larionov, O G Bushueva, N G Dobrovol’Skaya, Z P Kiryukhina, L F Litvin, S F Krasnov (2016). Assessing the contribution of nonhydraulic forces to the destruction of bonds between soil particles during water erosion. Eurasian Soil Sci, 49(5): 546–550
https://doi.org/10.1134/S1064229316050100
76 T Lei, Z Pang, X Wang, L Li, J Fu, G Kan, X Zhang, L Ding, J Li, S Huang, C Shao (2016). Drought and carbon cycling of grassland ecosystems under global change: a review. Water, 8(10): 460
https://doi.org/10.3390/w8100460
77 T Lei, J Wu, X Li, G Geng, C Shao, H Zhou, Q Wang, L Liu (2015). A new framework for evaluating the impacts of drought on net primary productivity of grassland. Sci Total Environ, 536: 161–172
https://doi.org/10.1016/j.scitotenv.2015.06.138 pmid: 26204052
78 M Li, Y Dong, Y C Qi, Y B Geng (2004). Impact of extreme drought on the fluxes of CO2, CH4, N2O from temperate steppe ecosystems. Resour Sci, 26(3): 89–95
79 Y Li, Y Liu, P Harris, H Sint, P J Murray, M R F Lee, L Wu (2017). Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Sci Total Environ, 603-604: 27–37
https://doi.org/10.1016/j.scitotenv.2017.06.012 pmid: 28614739
80 L Li, W Fan, X Kang, Y Wang, X Cui, C Xu, K Griffin, Y Hao (2016). Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland. Atmos Environ, 142: 32–42
https://doi.org/10.1016/j.atmosenv.2016.07.039
81 P Li, L Zhang, G Yu, C Liu, X Ren, H He, M Liu, H Wang, J Zhu, R Ge, N Zeng (2018). Interactive effects of seasonal drought and nitrogen deposition on carbon fluxes in a subtropical evergreen coniferous forest in the East Asian monsoon region. Agric Meteorol, 263: 90–99
https://doi.org/10.1016/j.agrformet.2018.08.009
82 Y Li, L Chen, H Wen, T Zhou, T Zhang, X Gao (2014). 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas. J Microbiol Biotechnol, 24(3): 313–323
https://doi.org/10.4014/jmb.1309.09001 pmid: 24296455
83 Y Liu, J Li, Y Jin, Y Zhang, L Sha, J Grace, Q Song, W Zhou, A Chen, P Li, S Zhang (2018). The influence of drought strength on soil respiration in a woody savanna ecosystem, southwest China. Plant Soil, 428(1–2): 321–333
https://doi.org/10.1007/s11104-018-3678-6
84 Y Liu, Y Yang, Q Wang, X Du, J Li, C Gang, W Zhou, Z Wang (2019). Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Sci Total Environ, 652: 671–682
https://doi.org/10.1016/j.scitotenv.2018.10.295 pmid: 30380475
85 M Longo, R G Knox, N M Levine, L F Alves, D Bonal, P B Camargo, D R Fitzjarrald, M N Hayek, N Restrepo-Coupe, S R Saleska, R da Silva, S C Stark, R P Tapajós, K T Wiedemann, K Zhang, S C Wofsy, P R Moorcroft (2018). Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol, 219(3): 914–931
https://doi.org/10.1111/nph.15185 pmid: 29786858
86 M Louhaichi, A Tastad (2010). The Syrian steppe: past trends, current status, and future priorities. Rangelands, 32(2): 2–7
https://doi.org/10.2111/1551-501X-32.2.2
87 Y Luo, X Zhou (2010). Soil Respiration and the Environment. Norman:Academic Press, 3–133
88 Q Ma, J Zhang, R Wang, S Ha, M Zhu, D Li (2016). System design of loss fast evaluation for grassland drought disaster based on RS, GIS and GPS. In: 7th Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention (RAC-2016). Changsha: Springer, 759–763
89 S L Malone, M G Tulbure, A J Pérez-Luque, T J Assal, L L Bremer, D P Drucker, V Hillis, S Varela, M L Goulden (2016). Drought resistance across California ecosystems: evaluating changes in carbon dynamics using satellite imagery. Ecosphere, 7(11): e01561
https://doi.org/10.1002/ecs2.1561
90 S Manzoni, S M Schaeffer, G Katul, A Porporato, J P Schimel (2014). A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem, 73: 69–83
https://doi.org/10.1016/j.soilbio.2014.02.008
91 S Manzoni, P Taylor, A Richter, A Porporato, G I Ågren (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol, 196(1): 79–91
https://doi.org/10.1111/j.1469-8137.2012.04225.x pmid: 22924405
92 M Martí-Roura, P Casals, J Romanyà (2011). Temporal changes in soil organic C under Mediterranean shrublands and grasslands: impact of fire and drought. Plant Soil, 338(1–2): 289–300
https://doi.org/10.1007/s11104-010-0485-0
93 N McDowell, W T Pockman, C D Allen, D D Breshears, N Cobb, T Kolb, J Plaut, J Sperry, A West, D G Williams, E A Yepez (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol, 178(4): 719–739
https://doi.org/10.1111/j.1469-8137.2008.02436.x pmid: 18422905
94 A Miranda, H Miranda, J Lloyd, J Grace, R Francey, J McIntyre, P Meir, P Riggan, R Lockwood, J Brass (1997). Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant Cell Environ, 20(3): 315–328
https://doi.org/10.1046/j.1365-3040.1997.d01-80.x
95 H Mirzaei, J Kreyling, M Zaman Hussain, Y Li, J Tenhunen, C Beierkuhnlein, A Jentsch (2008). A single drought event of 100-year recurrence enhances subsequent carbon uptake and changes carbon allocation in experimental grassland communities. J Plant Nutr Soil Sci, 171(5): 681–689
https://doi.org/10.1002/jpln.200700233
96 A K Mishra, V P Singh (2011). Drought modeling—a review. J Hydrol (Amst), 403(1–2): 157–175
https://doi.org/10.1016/j.jhydrol.2011.03.049
97 B Mueller, S I Seneviratne (2012). Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci USA, 109(31): 12398–12403
https://doi.org/10.1073/pnas.1204330109 pmid: 22802672
98 C Neely, S Bunning, A Wilkes (2009). Review of evidence on drylands pastoral systems and climate change: implications and opportunities for mitigation and adaptation. In: Land Tenure and Management Unit (NRLA), FAO. Rome: 1–50
99 A Niboyet, G Bardoux, S Barot, J M Bloor (2017). Elevated CO2 mediates the short-term drought recovery of ecosystem function in low-diversity grassland systems. Plant Soil, 420(1–2): 289–302
https://doi.org/10.1007/s11104-017-3377-8
100 C Nogueira, M N Bugalho, J S Pereira, M C Caldeira (2017). Extended autumn drought, but not nitrogen deposition, affects the diversity and productivity of a mediterranean grassland. Environ Exp Bot, 138: 99–108
https://doi.org/10.1016/j.envexpbot.2017.03.005
101 C Nogueira, A Nunes, M N Bugalho, C Branquinho, R L McCulley, M C Caldeira (2018). Nutrient addition and drought interact to change the structure and decrease the functional diversity of a Mediterranean grassland. Front Ecol Evol, 6: 155
https://doi.org/10.3389/fevo.2018.00155
102 C Nogueira, C Werner, A Rodrigues, M C Caldeira (2019). A prolonged dry season and nitrogen deposition interactively affect CO2 fluxes in an annual Mediterranean grassland. Sci Total Environ, 654: 978–986
https://doi.org/10.1016/j.scitotenv.2018.11.091 pmid: 30453267
103 R S Nowak (2017). Average is best. Nat Clim Chang, 7(2): 101–102
https://doi.org/10.1038/nclimate3212
104 W A Obermeier, L W Lehnert, C I Kammann, C Müller, L Grünhage, J Luterbacher, M Erbs, G Moser, R Seibert, N Yuan, J Bendix (2017). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat Clim Chang, 7(2): 137–141
https://doi.org/10.1038/nclimate3191
105 R Ochoa-Hueso, S L Collins, M Delgado-Baquerizo, K Hamonts, W T Pockman, R L Sinsabaugh, M D Smith, A K Knapp, S A Power (2018). Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol, 24(7): 2818–2827
https://doi.org/10.1111/gcb.14113 pmid: 29505170
106 J Padgham, J Jabbour, K Dietrich (2015). Managing change and building resilience: a multi-stressor analysis of urban and peri-urban agriculture in africa and asia. Urban Climate, 12: 183–204
107 M R Peck, G S Kaina, R J Hazell, B Isua, C Alok, L Paul, A J Stewart (2017). Estimating carbon stock in lowland Papua New Guinean forest: low density of large trees results in lower than global average carbon stock. Austral Ecol, 42(8): 964–975
https://doi.org/10.1111/aec.12525
108 D Peng, B Zhang, C Wu, A R Huete, A Gonsamo, L Lei, G E Ponce-Campos, X Liu, Y Wu (2017). Country-level net primary production distribution and response to drought and land cover change. Sci Total Environ, 574: 65–77
https://doi.org/10.1016/j.scitotenv.2016.09.033 pmid: 27623528
109 N Perveen, S Barot, G Alvarez, K Klumpp, R Martin, A Rapaport, D Herfurth, F Louault, S Fontaine (2014). Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Change Biol, 20(4): 1174–1190
https://doi.org/10.1111/gcb.12493 pmid: 24339186
110 R Valluru, W J Davies, M P Reynolds, I C Dodd (2016). Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Front Plant Sci, 7: 461
https://doi.org/10.3389/fpls.2016.00461 pmid: 27148292
111 M Reichstein, M Bahn, P Ciais, D Frank, M D Mahecha, S I Seneviratne, J Zscheischler, C Beer, N Buchmann, D C Frank, D Papale, A Rammig, P Smith, K Thonicke, M van der Velde, S Vicca, A Walz, M Wattenbach (2013). Climate extremes and the carbon cycle. Nature, 500(7462): 287–295
https://doi.org/10.1038/nature12350 pmid: 23955228
112 T Riis, P S Levi, A Baattrup-Pedersen, K G Jeppesen, S Rosenhøj Leth (2017). Experimental drought changes ecosystem structure and function in a macrophyte-rich stream. Aquat Sci, 79(4): 841–853
https://doi.org/10.1007/s00027-017-0536-1
113 M C Roby, M G Salas Fernandez, E A Heaton, F E Miguez, A Vanloocke (2017). Biomass sorghum and maize have similar water-use-efficiency under non-drought conditions in the rain-fed midwest US. Agric Meteorol, 247: 434–444
https://doi.org/10.1016/j.agrformet.2017.08.019
114 J Roy, C Picon-Cochard, A Augusti, M L Benot, L Thiery, O Darsonville, D Landais, C Piel, M Defossez, S Devidal, C Escape, O Ravel, N Fromin, F Volaire, A Milcu, M Bahn, J F Soussana (2016). Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc Natl Acad Sci USA, 113(22): 6224–6229
https://doi.org/10.1073/pnas.1524527113 pmid: 27185934
115 T Saladyga, A Hessl, B Nachin, N Pederson (2013). Privatization, drought, and fire exclusion in the Tuul River watershed, Mongolia. Ecosystems (NY), 16(6): 1139–1151
https://doi.org/10.1007/s10021-013-9673-0
116 N Salehnia, A Alizadeh, H Sanaeinejad, M Bannayan, A Zarrin, G Hoogenboom (2017). Estimation of meteorological drought indices based on agmerra precipitation data and station-observed precipitation data. J Arid Land, 9(6): 797–809
https://doi.org/10.1007/s40333-017-0070-y
117 M Sanaullah, A Chabbi, C Girardin, J L Durand, M Poirier, C Rumpel (2014). Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant Soil, 374(1–2): 767–778
https://doi.org/10.1007/s11104-013-1890-y
118 M Sanaullah, A Chabbi, C Rumpel, Y Kuzyakov (2012). Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol Biochem, 55: 132–139
https://doi.org/10.1016/j.soilbio.2012.06.004
119 R Sándor, Z Barcza, M Acutis, L Doro, D Hidy, M Köchy, J Minet, E Lellei-Kovács, S Ma, A Perego, S Rolinski, F Ruget, M Sanna, G Seddaiu, L Wu, G Bellocchi (2017). Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: uncertainties and ensemble performance. Eur J Agron, 88: 22–40
https://doi.org/10.1016/j.eja.2016.06.006
120 E J Sayer, A E Oliver, J D Fridley, A P Askew, R T E Mills, J P Grime (2017). Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. Ecol Evol, 7(3): 855–862
https://doi.org/10.1002/ece3.2700 pmid: 28168022
121 J D Scasta, E T Thacker, T J Hovick, D M Engle, B W Allred, S D Fuhlendorf, J R Weir (2016). Patch-burn grazing (pbg) as a livestock management alternative for fire-prone ecosystems of north America. Renew Agric Food Syst, 31(6): 550–567
https://doi.org/10.1017/S1742170515000411
122 M Schrama, R D Bardgett (2016). Grassland invasibility varies with drought effects on soil functioning. J Ecol, 104(5): 1250–1258
https://doi.org/10.1111/1365-2745.12606
123 R L Scott, E P Hamerlynck, G D Jenerette, M S Moran, G A Barron-Gafford(2010). Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. J Geophys Res-Biogeo, (2005–2012): 115
https://doi.org/10.1029/2010JG001348
124 R L Scott, G D Jenerette, D L Potts, T.E Huxman(2009). Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J Geophys Res-Biogeo, (2005–2012): 114
125 J Scurlock, D Hall (1998). The global carbon sink: a grassland perspective. Glob Change Biol, 4(2): 229–233
https://doi.org/10.1046/j.1365-2486.1998.00151.x
126 C Prudhomme, I Giuntoli, E L Robinson, D B Clark, N W Arnell, R Dankers, B M Fekete, W Franssen, D Gerten, S N Gosling, S Hagemann, D M Hannah, H Kim, Y Masaki, Y Satoh, T Stacke, Y Wada, D Wisser (2014). Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci USA, 111(9): 3262–3267
https://doi.org/10.1073/pnas.1222473110 pmid: 24344266
127 M Shinoda, G Nachinshonhor, M Nemoto (2010). Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ, 74(1): 63–69
https://doi.org/10.1016/j.jaridenv.2009.07.004
128 B Shrestha, S Maskey, M S Babel, A van Griensven, S Uhlenbrook (2018). Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou basin, Lao PDR. Clim Change, 149(1): 13–27
https://doi.org/10.1007/s10584-016-1874-z
129 C Signarbieux, U Feller (2012). Effects of an extended drought period on physiological properties of grassland species in the field. J Plant Res, 125(2): 251–261
https://doi.org/10.1007/s10265-011-0427-9 pmid: 21611812
130 M D Smith (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol, 99(3): 656–663
https://doi.org/10.1111/j.1365-2745.2011.01798.x
131 X Song, Y Wang, X Lv (2016). Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecol Evol, 6(6): 1871–1882
https://doi.org/10.1002/ece3.1982 pmid: 26933491
132 J F Soussana, J F Soussana, P Loiseau, N Vuichard, E Ceschia, J Balesdent, T Chevallier, D Arrouays (2004). Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage, 20(2): 219–230
https://doi.org/10.1079/SUM2003234
133 R A Sponseller (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Change Biol, 13(2): 426–436
https://doi.org/10.1111/j.1365-2486.2006.01307.x
134 A Stampfli, J M G Bloor, M Fischer, M Zeiter (2018). High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Glob Change Biol, 24(5): 2021–2034
https://doi.org/10.1111/gcb.14046 pmid: 29323767
135 P Su, J Lou, P C Brookes, Y Luo, Y He, J Xu (2017). Taxon-specific responses of soil microbial communities to different soil priming effects induced by addition of plant residues and their biochars. J Soils Sediments, 17(3): 674–684
https://doi.org/10.1007/s11368-015-1238-8
136 V Suseela, R T Conant, M D Wallenstein, J S Dukes (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol, 18(1): 336–348
https://doi.org/10.1111/j.1365-2486.2011.02516.x
137 L L Tang, X B Cai, W S Gong, J Z Lu, X L Chen, Q Lei, G L Yu (2018). Increased vegetation greenness aggravates water conflicts during lasting and intensifying drought in the Poyang Lake Watershed, China. Forests, 9(1): 24
https://doi.org/10.3390/f9010024
138 F Tardieu, C Granier, B Muller (2011). Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol, 14(3): 283–289
https://doi.org/10.1016/j.pbi.2011.02.002 pmid: 21388861
139 Z K Tessema, W F de Boer, H H T Prins (2016). Changes in grass plant populations and temporal soil seed bank dynamics in a semi-arid African savanna: implications for restoration. J Environ Manage, 182: 166–175
https://doi.org/10.1016/j.jenvman.2016.07.057 pmid: 27472053
140 S Thiessen, G Gleixner, T Wutzler, M Reichstein (2013). Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass–an incubation study. Soil Biol Biochem, 57: 739–748
https://doi.org/10.1016/j.soilbio.2012.10.029
141 M L Thomey, P L Ford, M C Reeves, D M Finch, M E Litvak, S L Collins (2014). Climate change impacts on future carbon stores and management of warm deserts of the United States. Rangelands, 36(1): 16–24
https://doi.org/10.2111/RANGELANDS-D-13-00045.1
142 L J Thomson, S Macfadyen, A A Hoffmann (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control, 52(3): 296–306
https://doi.org/10.1016/j.biocontrol.2009.01.022
143 J Thorpe (2011). Vulnerability of Prairie Grasslands to Climate Change; No. 12855–2E11; Saskatchewan Research Council: Saskatoon
144 H Tollerud, J Brown, T Loveland, R Mahmood, N Bliss (2018). Drought and land-cover conditions in the great plains. Earth Interact, 22(17): 1–25
https://doi.org/10.1175/EI-D-17-0025.1
145 P Trifilò, V Casolo, F Raimondo, E Petrussa, F Boscutti, M A Lo Gullo, A Nardini (2017). Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus Nobilis L.: the possible link between carbon starvation and hydraulic failure. Plant Physiol Biochem, 120: 232–241
https://doi.org/10.1016/j.plaphy.2017.10.003 pmid: 29073538
146 M K Trzcinski, D S Srivastava, B Corbara, O Dézerald, C Leroy, J F Carrias, A Dejean, R Céréghino (2016). The effects of food web structure on ecosystem function exceeds those of precipitation. J Anim Ecol, 85(5): 1147–1160
https://doi.org/10.1111/1365-2656.12538 pmid: 27120013
147 A Tubi, E Feitelson (2019). Changing drought vulnerabilities of marginalized resource-dependent groups: a long-term perspective of Israel’s Negev Bedouin. Reg Environ Change, 19(2): 477–487
https://doi.org/10.1007/s10113-018-1420-9
148 E Urbanek, S H Doerr (2017). CO2 efflux from soils with seasonal water repellency. Biogeosciences, 14(20): 4781–4794
https://doi.org/10.5194/bg-14-4781-2017
149 J M Valliere, I C Irvine, L Santiago, E B Allen (2017). High N, dry: experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Glob Change Biol, 23(10): 4333–4345
https://doi.org/10.1111/gcb.13694 pmid: 28319292
150 M K van der Molen, A J Dolman, P Ciais, T Eglin, N Gobron, B E Law, P Meir, W Peters, O L Phillips, M Reichstein, T Chen, S C Dekker, M Doubková, M A Friedl, M Jung, B J J M van den Hurk, R A M de Jeu, B Kruijt, T Ohta, K T Rebel, S Plummer, S I Seneviratne, S Sitch, A J Teuling, G R van der Werf, G Wang (2011). Drought and ecosystem carbon cycling. Agric Meteorol, 151(7): 765–773
https://doi.org/10.1016/j.agrformet.2011.01.018
151 N van Eekeren, L Bommelé, J Bloem, T Schouten, M Rutgers, R de Goede, D Reheul, L Brussaard (2008). Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl Soil Ecol, 40(3): 432–446
https://doi.org/10.1016/j.apsoil.2008.06.010
152 B Varga, G Vida, E Varga-László, B Hoffmann, O Veisz (2017). Combined effect of drought stress and elevated atmospheric CO2 concentration on the yield parameters and water use properties of winter wheat (triticum aestivum l.) genotypes. J Agron Crop Sci, 203(3): 192–205
https://doi.org/10.1111/jac.12176
153 J Vargas, P Paneque (2019). Challenges for the integration of water resource and drought-risk management in Spain. Sustainability, 11(2): 308
https://doi.org/10.3390/su11020308
154 M B Wagena, A Sommerlot, A Z Abiy, A S Collick, S Langan, D R Fuka, Z M Easton (2016). Climate change in the Blue Nile Basin Ethiopia: implications for water resources and sediment transport. Clim Change, 139(2): 229–243
https://doi.org/10.1007/s10584-016-1785-z
155 M P Waldrop, J M Holloway, D B Smith, M B Goldhaber, R E Drenovsky, K M Scow, R Dick, D Howard, B Wylie, J B Grace (2017). The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology, 98(7): 1957–1967
https://doi.org/10.1002/ecy.1883 pmid: 28464335
156 J Walter, L Nagy, R Hein, U Rascher, C Beierkuhnlein, E Willner, A Jentsch (2011). Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot, 71(1): 34–40
https://doi.org/10.1016/j.envexpbot.2010.10.020
157 J S Wang, S R Kawa, G J Collatz, M Sasakawa, L V Gatti, T Machida, Y Liu, M Manyin (2018a). A global synthesis inversion analysis of recent variability in CO2 fluxes using gosat and in situ observations. Atmos Chem Phys, 18(15): 11097–11124
https://doi.org/10.5194/acp-18-11097-2018
158 K Wang, C Shen, B Sun, X. N Wang, D Wei, L Y Liu (2018a). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China. J of Appl Ecol, 29(7): 2286–2294
159 Y Wang, C Hu, W Dong, X Li, Y Zhang, S Qin, O Oenema (2015). Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agric Ecosyst Environ, 206: 33–45
https://doi.org/10.1016/j.agee.2015.03.016
160 Y Wang, Y Hao, X Y Cui, H Zhao, C Xu, X Zhou, Z Xu (2014). Responses of soil respiration and its components to drought stress. J Soils Sediments, 14(1): 99–109
https://doi.org/10.1007/s11368-013-0799-7
161 Z Wang, Q Ma, J Wang, S Chen, Y Fan, L Deng (2018b). Empirical study on agricultural drought adaptation of typical rainfed areas in Shidian County, China. Int J Disaster Risk Reduct, 28: 394–403
https://doi.org/10.1016/j.ijdrr.2018.03.024
162 K Weißhuhn, H Auge, D Prati (2011). Geographic variation in the response to drought in nine grassland species. Basic Appl Ecol, 12(1): 21–28
https://doi.org/10.1016/j.baae.2010.11.005
163 W Whitford, Y Steinberger (2012). Effects of seasonal grazing, drought, fire, and carbon enrichment on soil microarthropods in a desert grassland. J Arid Environ, 83: 10–14
https://doi.org/10.1016/j.jaridenv.2012.03.021
164 N Williams, K Holland (2007). The ecology and invasion history of hawkweeds (Hieracium species) in Australia. Plant Prot Q, 22(2): 76–80
165 L Xiao, Y Zhang, P Li, G Xu, P Shi, Y Zhang (2019). Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and chinese pine forest on the loess plateau. Geoderma, 334: 1–8
https://doi.org/10.1016/j.geoderma.2018.07.043
166 Z Xu, Z Li, H Liu, X Zhang, Q Hao, Y Cui, S Yang, M Liu, H Wang, G Gielen, Z Song (2018). Soil organic carbon in particle-size fractions under three grassland types in Inner Mongolia, China. J Soils Sediments, 18(5): 1896–1905
https://doi.org/10.1007/s11368-018-1951-1
167 Y Hao, H Zhang, J A Biederman, L Li, X Cui, K Xue, J Du, Y Wang (2018). Seasonal timing regulates extreme drought impacts on CO2 and H2O exchanges over semiarid steppes in Inner Mongolia, China. Agric Ecosyst Environ, 266: 153–166
https://doi.org/10.1016/j.agee.2018.06.010
168 J Yang, H Tian, S Pan, G Chen, B Zhang, S Dangal (2018). Amazon drought and forest response: largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Glob Change Biol, 24(5): 1919–1934
https://doi.org/10.1111/gcb.14056 pmid: 29345031
169 W Yuhui, C Jiquan, Z Guangsheng, S Changliang, C Jun, W Yu, S Jianmin (2018). Predominance of precipitation event controls ecosystem CO2 exchange in an Inner Mongolian desert grassland, China. J Clean Prod, 197(1): 781–793
https://doi.org/10.1016/j.jclepro.2018.06.107
170 J C Yuste, J Penuelas, M Estiarte, J Garcia-Mas, S Mattana, R Ogaya, M Pujol, J Sardans (2011). Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Change Biol, 17(3): 1475–1486
https://doi.org/10.1111/j.1365-2486.2010.02300.x
171 S Zaka, L Q Ahmed, A J Escobar-Gutiérrez, F Gastal, B Julier, G Louarn (2017). How variable are non-linear developmental responses to temperature in two perennial forage species? Agric Meteorol, 232: 433–442
https://doi.org/10.1016/j.agrformet.2016.10.004
172 S Zaka, E Frak, B Julier, F Gastal, G Louarn (2016). Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop. AoB Plants, 8
pmid: 27178065
173 C Zhang, J Zhang, H Zhang, J Zhao, Q Wu, Z Zhao, T Cai (2015). Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (zea maysl.) under water stress. Plant Growth Regul, 77(2): 233–243
https://doi.org/10.1007/s10725-015-0056-8
174 M Zhao, S W Running (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943
https://doi.org/10.1126/science.1192666 pmid: 20724633
175 Y Zhong, W Yan, Y Zong, Z Shangguan (2016). Biotic and abiotic controls on the diel and seasonal variation in soil respiration and its components in a wheat field under long-term nitrogen fertilization. Field Crops Res, 199: 1–9
https://doi.org/10.1016/j.fcr.2016.09.014
176 L Zhou, S Wang, Y Chi, W Ju, K Huang, R Mickler, M Wang, Q Yu (2018). Changes in the carbon and water fluxes of subtropical forest ecosystems in south-western China related to drought. Water, 10(7): 821–838
https://doi.org/10.3390/w10070821
177 X Zhou, R A Sherry, Y An, L L Wallace, Y Luo (2006). Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochem Cycles, 20(1)
https://doi.org/10.1029/2005GB002526
178 M Zwicke, G A Alessio, L Thiery, R Falcimagne, R Baumont, N Rossignol, J F Soussana, C Picon-Cochard (2013). Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies. Glob Change Biol, 19(11): 3435–3448
https://doi.org/10.1111/gcb.12317 pmid: 23832449
[1] Yuanfang CHAI, Yitian LI, Yunping YANG, Sixuan LI, Wei ZHANG, Jinqiu REN, Haibin XIONG. Water level variation characteristics under the impacts of extreme drought and the operation of the Three Gorges Dam[J]. Front. Earth Sci., 2019, 13(3): 510-522.
[2] Zheng WANG, Zhihua MAO, Junshi XIA, Peijun DU, Liangliang SHI, Haiqing HUANG, Tianyu WANG, Fang GONG, Qiankun ZHU. Data fusion in data scarce areas using a back-propagation artificial neural network model: a case study of the South China Sea[J]. Front. Earth Sci., 2018, 12(2): 280-298.
[3] Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA[J]. Front. Earth Sci., 2018, 12(1): 37-51.
[4] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[5] Shaolei TANG,Xiaofeng YANG,Di DONG,Ziwei LI. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method[J]. Front. Earth Sci., 2015, 9(4): 722-731.
[6] Junzhong ZHANG, Baiying MAN, Benzhong FU, Li LIU, Changzhi HAN. The diversity of soil culturable fungi in the three alpine shrub grasslands of Eastern Qilian Mountains[J]. Front Earth Sci, 2013, 7(1): 76-84.
[7] Keyan FANG, Xiaohua GOU, Fahu CHEN, Fen ZHANG, Yingjun LI, Jianfeng PENG, . Comparisons of drought variability between central High Asia and monsoonal Asia: Inferred from tree rings[J]. Front. Earth Sci., 2010, 4(3): 277-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed